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Abstract
The Finite-Element Interface (FEI) specification provides a layered abstraction that permits finite-element
analysis codes to utilize various linear-algebra solution packages with minimal concern for the internal
details of the solver modules.  Alternatively, this interface can be viewed as a way for solver developers to
provide solution services to finite-element clients without having to embed finite-element abstractions
within their solver libraries.  The purpose of this document is to provide some level of documentation
between the bare interface specification itself, which consists only of C/C++ header files, and the full
documentation suite that supports the interface definition by providing considerable detail as to its design
and implementation.  This document primarily provides the “how” of calling the interface member
functions, so that programmers can readily learn how to utilize the interface implementation without having
to consider all the details contained in the interface’s definition, design, and motivation.

The interface specification is presented three times in this document, each time with an increasing level of
detail.  The first presentation provides a general overview of the calling sequence, in order to acquaint the
programmer with a basic introduction to how the interface is used to “train” the underlying solver software
on the particular finite-element problem that is to be solved.  The second pass through the interface
definition provides considerable detail on each method, including specific considerations as to the structure
of the underlying data, and an exposition of potential pitfalls that may occur as a byproduct of either the
finite-element modeling process, or of the use of the associated interface implementation.  Finally, a third
description of the interface is given implicitly via the discussion of sample problems that provide concrete
examples of the use of the finite-element interface.
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1. Introduction
The Finite-Element Interface (FEI) specification provides a layered abstraction that
permits finite-element analysis codes to utilize linear-algebra solution packages without
worrying about the internal details of the solver modules.  Alternatively, this interface
can be viewed as a way for solver developers to provide solution services to finite-
element clients without having to embed finite-element physics abstractions within their
solver libraries1.

1.1. The Purpose of this Document

The purpose of this document is to provide some level of documentation between the
bare interface specification itself, which consists of  C/C++ header files2, and the full
documentation set [Clay, et. al, 1999, as well as various URLs listed in the references]
that supports the interface definition by providing considerable detail as to its design and
implementation.  This document primarily provides the “how” of calling the interface
member functions, so that programmers can readily learn how to utilize the interface
implementation without having to consider all the details contained in the interface’s
definition, design, and motivation.

In order to be used with the full range of finite-element clients and solution servers, the
interface’s calling sequence and data structures must be sufficiently general and
extensible so as to support the full variety of finite-element data types.

This document implicitly assumes some knowledge of the fundamental abstractions used
in the finite-element interface specification.  These definitions can be found in the
associated Sandia Technical Report on the interface [Clay, et. al, 1999a], but simplified
versions are given in an appendix to this document as well.

1.2. How to Use This Document

The interface specification is presented three times in this document, each time with an
increasing level of detail.  The first presentation provides a general overview of the
calling sequence, in order to acquaint the programmer with a basic introduction to how
the interface is used to “train” the underlying solver software on the particular finite-
element problem that is to be solved.  The second pass through the interface definition
provides more detail regarding each method, including specific considerations as to the
structure of the underlying data.  It also includes an exposition of pitfalls that may occur
as a byproduct of either the finite-element modeling process, or of the use of the
associated interface implementation.  The third description of the interface is given

                                                
1 This version of the specification does not address matrix-free implementations or multi-level methods.
Since a primary function of the interface is to load explicit representations of linear algebraic components
(e.g., matrices and vectors), matrix-free implementations are, strictly speaking, not needed.  While the FEI
could be used to provide common interaction with the solvers, the underlying linear component interfaces
can be efficiently used directly in that case.  Multi-level extensions to this specification are currently being
developed.
2 Note that for purposes of supporting procedural codes there is a C header file (fei_proc.h) which is
functionally equivalent to the C++ header file (fei.h).
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implicitly via the exposition of various sample problems that provide concrete examples
of the use of the finite-element interface.  In each of these example problems, a particular
simple finite-element analysis is performed to demonstrate many of the more subtle
concepts embedded in the finite-element interface specification.

1.3. Some Fundamental Assumptions and Conventions

Throughout this document, a color mono-spaced font is used to highlight source-code
listings.  These source examples are taken either from the C++ interface specification
header file (fei.h), or from the various example problems included with the FEI
implementation package that accompanies the full interface specification distribution.

The reader is assumed to have some familiarity with the C++ programming language, as
that language is used in all concrete expositions of procedures and data.  The general term
“identifier”, abbreviated “ID” is taken to represent a global (i.e., uniquely valid over all
processors) numbering scheme.  Finally, a more detailed exposition of fundamental
assumptions and design principles can be found in the references [Clay, et. al, 1999a].

2. Interface Specification
This section provides two views of the interface specification:

• an overview of the  interface calling sequence, and

• a more detailed exposition of the individual procedures that collectively define the
interface specification.

2.1. Overview of Calling Sequence

The interface consists of four main steps, namely:

(1) initialization,

(2) loading,

(3) solution, and

(4) solution parameter return.

These individual processes will be discussed in order below.  In addition to these four
fundamental constituents, various utility functions are provided to aid the finite-element
developer in using the interface.

2.1.1. Initialization

The first step in the calling process is to pass the structure of the finite-element data, so
that this physical structure can be translated into an algebraic sparse matrix.

The data passed during the initialization step includes:

• control data defining the underlying element types and solution fields used, as well as
data indicating how many aggregate finite-element data types will be utilized,
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• element data, including element connectivity information that can be used to translate
finite-element nodal equations to systems of sparse algebraic equations,

• control data for nodes that must be handled via special logic, for example, nodes
shared among processors, and

• data to aid in the definition of any constraint relations local to a given processor.

At the end of the initialization step, the interface implementation can determine the
underlying matrix structure, and allocate memory for matrix storage in preparation for the
load step.

2.1.2. Load

Once the matrix structure memory has been allocated, that structure can be populated
with finite-element data according to standard finite-element matrix assembly procedures.
This is the general task of the load step in the interface calling sequence.

Examples of data passed during the load step include:

• boundary-condition data for implementing essential, natural, or mixed boundary
conditions for nodes associated with each processor,

• element arrays, both element stiffness and loads, passed as aggregate element set
abstractions, and

• constraint relations, defined in terms of nodal algebraic weights and tables of
associated nodes.

At the end of the load step, the sparse matrix structure is fully populated and has all
appropriate boundary and algebraic constraint relations implemented.

2.1.3. Solution

Once the load step is complete, the solver module’s internal solution procedures may be
invoked.  This process necessarily involves passing control data (e.g., convergence
tolerances and control codes to indicate the type of preconditioner and solver to be used)
through the interface to the solver.  This step in the calling sequence therefore typically
requires some solver-specific parameters, although reasonable defaults are provided.  In
addition to providing methods to invoke the solver, the specification also permits passing
initial solution estimates to the solution module, which is especially useful in the case of
iterative solvers being used in nonlinear and/or transient finite-element analyses.

2.1.4. Solution Return

Upon completion of the solution process, the finite-element solution data must be passed
from the solver back to the finite-element client. During this step, the interface
implementation transfers the algebraic solution data into arrays corresponding to finite-
element data.  These aggregate data structures support the following processes:

• return nodal solution parameters in containers associated with each block of elements,

• return elemental solution parameters using the same blocked containers, and
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• return constraint data on either an individual or collective basis.

In each case, utility functions (e.g., query functions to determine the size of the associated
containers) are provided to support these return processes, as the finite-element client
program may need to allocate memory in support of the solution return step.

2.2. Detailed Exposition of Individual Calls

The following subsections provide more detail on the various methods used to implement
the interface, and on associated programming support.  In each case, C++ conventions are
used to demonstrate the various procedures and data that define the interface, even
though the interface is also intended for use with procedural languages like ANSI C and
FORTRAN.  The C++ language is utilized here because it provides the most precise and
concise specification for the interface’s procedures and data, and because the original
implementation of the specification was written in C++.

2.2.1. Associated Header Files

The file “basicTypes.h” contains definitions required to define some of the derived data
types used in the interface specification.  In particular, the GlobalID data type is defined
to permit long integer identifiers to be associated with nodes and elements used by large-
scale finite-element programs.  This type is provided because a conventional 32-bit
integer may not be sufficient for either large (e.g., multi-billion node) finite-element
meshes, or to permit the finite-element developer to utilize part of the nodeID/elementID
representation for alternative purposes (e.g., adaptive mesh refinement, load balancing,
etc.).  In any case, the use of the GlobalID data type insulates the interface specification
from unwarranted machine-dependencies caused by reliance on a particular integer
format used to represent nodes and elements.

The header files “fei.h” and “cfei.h” define the FEI specification precisely, in C++ and
ANSI C format, respectively.  The ANSI C header is recommended for developers who
wish to work in procedural languages like FORTRAN.

2.2.2. Object-Oriented Design Philosophy

Because the fundamental motivation for the interface specification is the abstraction of
equation-solver services needed by finite-element programs, each method used in the
interface is associated with a specific linear equation system object.  In particular, the
various procedures that define the C++ interface specification are implemented as class
methods associated with a SparseLinearEquations object.  The procedural (C) interface
specification is functionally equivalent.  In order to support multiple instances of linear
systems, the procedural functions contain an extra parameter for specifying a particular
system of equations.

The SparseLinearEquations object is given a “communicator” at construction time to
establish a context for inter-processor communications.  Currently, the FEI
implementation utilizes MPI (Message Passing Interface) for communications, so the
constructor method takes the following form:

SparseLinearEquations(MPI_Comm FEI_COMM_WORLD);
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2.2.3. Initialization

The various initialization methods are presented below.  In each case, the method returns
an integer-valued warning status indicator.   In general, a zero return value implies that
the method has completed without problems, and nonzero values imply some form of
warning that is appropriate to the particular method’s function.  In the initial v1.0 release
of the implementation, developers are advised to look up nonzero warnings directly in the
source code distribution found in the fei-isis/src/ distribution directory.

2.2.3.1. Solve-Step Initialization

Each solution step corresponds to the formation of a single system of linear equations,
and an initialization call is made to indicate the start of a new solve step.  This code to
initSolveStep takes two parameters:

• numElemBlocks, the total number of element blocks3 passed in this solve step,

• solvType, a parameter to identify the solution type (currently taken as zero, which
corresponds to simply solving a linear system, but which will eventually include
nonzero values for eigensolution and other services – if a nonzero value is passed for
version 1.0 of the specification, it is simply ignored).

The C++  initSolveStep function takes the following form:

int initSolveStep(int numElemBlocks,
                  int solvType);

2.2.3.2. Field Initialization

Because the finite-element method is a general approximation scheme capable of dealing
with multiple interacting physical processes, it is commonly desirable to be able to model
multi-physics effects during a finite-element simulation.  In order to facilitate modeling
separate approximations for the various mathematical solution fields present in a
problem, the interface requires the finite-element client program to identify all the fields
present in the simulation.  This identification is handled via the initFields method, shown
here using its C++ calling convention:

int initFields(int numFields,
               const int *cardFields,
               const int *fieldIDs);

The following parameters are passed to the initFields method:

• numFields, the total number of solution fields utilized in this analysis,

• cardFields, the list of solution cardinalities4 associated with each field, and

                                                
3 An element block is a collection of elements lying on a single processor and satisfying specific criteria
concerning generic element representations.  The reader is referred to Appendix A (the glossary) for details.
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• fieldIDs, a list of integer field identifiers used to identify the various solution fields
with their unique element-based approximations

The initFields method must be called on all processors, with the same arguments on each
processor.  All fields present in the entire simulation (i.e., not just local to a processor)
need to be provided. A sample field initialization is given below, for the case of a coupled
stress/thermal analysis using one element block, where the element displacement field is
approximated with a biquadratic interpolant, and the element temperatures are
approximated using a bilinear interpolant.

displacement interpolation node

temperature and displacement interpolation node

Figure 1: Multiple-field example

Under the assumption that the displacement field is identified with the integer ID 5 and
the temperature field with the integer ID 10, the data structures passed to initFields take
the following form:

numFields: 2

cardFields: [ ]12

fieldIDs: [ ]105

2.2.3.3. Blocked-Element Initialization

The initialization data is passed in on a block-by-block basis, beginning with functions
that permit element-block connectivities to be converted to algebraic sparsity structure.
There are three methods used to handle these blocked-element initialization tasks.

                                                                                                                                                
4 The nodal solution cardinality is the total number of individual scalar solution components interpolated at
a node.  For a displacement vector in 3D, the field solution cardinality is 3, and for a scalar field, the
solution cardinality is 1.  In a multiphysics setting, the nodal solution cardinality is the sum of all the field
solution cardinalities, over each field defined at a given node.  In general, the reader should establish by
context whether the term “cardinality” refers to a given field defined at a node, or to the accumulation of all
the fields defined at a node.
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The beginInitElemBlock method marks the start of the initialization process for a
particular block, and this initialization routine is called exactly once for each block.  The
C++ beginInitElemBlock function takes the following form:

int beginInitElemBlock(GlobalID elemBlockID,
                       int numNodesPerElement,
                       const int *numElemFields,
                       const int *const *elemFieldIDs,
                       int interleaveStrategy,
                       int numElemDOF,
                       int numElemSets,
                       int numElemTotal);

The parameters passed to beginInitElemBlock include:

• elemBlockID, the element block ID for this block of generic element data,

• numNodesPerElement, the generic number of nodes for each element in this block,

• numElemFields, the list of number of fields for each node of each generic element,

• elemFieldIDs, the table of field identifiers, with each row corresponding to the list of
fieldIDs associated with a given node in the generic element,

• interleaveStrategy, a parameter that indicates the packing strategy used for passing
the nodal field data for each element (this parameter indicates whether element matrix
storage will be oriented by a field-first or node-first arrangement.  Currently, there are
two options, FIELD_MAJOR and NODE_MAJOR, corresponding to the element
matrix storage schemes diagrammed in Figure 2 below),

Field A : Displacements (u,v)

Field B : Temperature T

Nodal Solution Vector (u,v,T)

2

3 4

1

u1

v1

T1

u2

v2

T2

u3

v3

T3

u4

v4

T4

a

b

c

Element Solution Parameters (a,b,c)

node 1 params

node 2 params

node 3 params

node 4 params

element  params

u1

v1

u2

v2

u3

v3

u4

v4

T1

T2

T3

T4

a

b

c

field A params

field B params

element  params

FIELD_MAJOR 
Mapping

NODE_MAJOR 
Mapping

Figure 2: Element storage interleave strategies
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• numElemDOF, the number of element solution parameters for elements in this block,

• numElemSets, the total number of elemSets5 in this block, and

• numElemTotal, the total number of elements in this block.

The initElemSet method is invoked once for every element set aggregation required to
define a particular block.  The C++ initElemSet function takes the following form:

int initElemSet(int numElems,
                const GlobalID *elemIDs,
                const GlobalID *const *elemConn);

The parameters passed to initElemSet include:

• numElems, the number of elements in this element set,

• elemIDs, the list of element IDs for this block, and

• elemConn, the matrix of connectivity data for these elements.

The endInitElemBlock method marks the end of the initialization process for a particular
block, and this initialization routine is called exactly once for each block.  This terminal
initialization method requires no passed parameters.

int endInitElemBlock();

2.2.3.4. Node Set Initialization

Nodal data passed through the interface implementation can be decomposed into three
classes, and the last two of these must be identified during node set initialization:

• nodes where boundary conditions are specified6,

• nodes that are shared among processors, and

• external nodes, not present in the active node list7 and requiring inter-processor
communications operations to resolve data needs.

                                                
5 A collection of elements grouped to achieve a computational economy of scale: in general, the reader
should refer to the glossary for definitions of terms used in this exposition.
6 It should be noted that nodes where boundary condition information is specified need not be identified or
processed during the initialization process. On the other hand, nodes requiring interprocessor
communications must be identified during the initialization step.
7 The set of all nodes associated with a block of elements located on a given processor.  More information
on this term (and others) is given in the glossary.
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Fundamental information for these last two node classes is provided to the interface
implementation in the initialization step via four method calls.  The first and last methods
define the start/end structure of the node set initialization process, and these two methods
are called exactly once per solve step.  The other two methods are called once per
associated node set, and represent the two classes of node sets that require interprocessor
communications.

The beginInitNodeSets method marks the start of the nodal-data initialization process
for a particular solve step.  This initialization routine is called exactly once for each solve
step. The C++ beginInitNodeSets function takes the following form:

int beginInitNodeSets(int numSharedNodeSets,
                      int numExtNodeSets);

The parameters passed to beginInitNodeSets include the two basic nodal cases that
require interprocessor communications:

• numSharedNodeSets, the number of shared node sets to be passed, and

• numExtNodeSets, the number of external node sets to be passed.

The initSharedNodeSet method is called to identify the set of local nodes that are shared
with one or more other processors. The C++ initSharedNodeSet function takes the
following form:

int initSharedNodeSet(const GlobalID *sharedNodeIDs,
                 int lenSharedNodeIDs,
                 const int *const *sharedProcIDs,
                 const int *lenSharedProcIDs);

The parameters passed to initSharedNodeSet include the following:

• sharedNodeIDs, the list of shared node IDs in this node set,

• lenSharedNodeIDs, the number of shared nodes in this list,

• sharedProcIDs, the table of processor IDs for the shared nodes in this nodal list, with
the number of rows equal to the number of shared nodes, and the length of each row
given by the number of processors which share that node, and

• lenSharedProcIDs, the length of each list of processor IDs for all of the shared nodes
in sharedNodeIDs (note: lenSharedProcIDs, like sharedNodeIDs, has a length of
lenSharedNodeIDs).
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Elements on Processor 0

Elements on Processor 1

Nodes Local to Processor 0

Nodes Local to Processor 1

Nodes Shared by

Processors 0 and 1

Figure 3: Shared topology sample geometry

In the figure above, the passed data structures take the following form:

lenSharedNodeIDs: 5

sharedNodeIDs: [ ]109876

sharedProcIDs:























10

10

10

10

10

lenSharedProcIDs: [ ]22222

Because of the symmetry of the problem (with respect to sharing of nodes between the
two processors), the data passed by each processor is identical.  Thus the shared-node
example above is relatively simple, and the resulting table of shared processor IDs takes a
simple form.  A more complex (and realistic) example is given in Figure 4 below:

non-shared nodes
shared nodes

processor 0
processor 1
processor 2
processor 3

1

2

3

4

5

6

7

8

9

0 1

2 3

Figure 4: Complex shared topology sample geometry

In this more complicated example, the passed data structures take the following form.
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Processor 0:

lenSharedNodeIDs: 3

sharedNodeIDs: [ ]542

sharedProcIDs:

















3210

......10

......20

lenSharedProcIDs: [ ]422

Processor 1:

lenSharedNodeIDs: 3

sharedNodeIDs: [ ]854

sharedProcIDs:

















......31

3210

......10

lenSharedProcIDs: [ ]242

Processor 2:

lenSharedNodeIDs: 3

sharedNodeIDs: [ ]652

sharedProcIDs:

















......32

3210

......20

lenSharedProcIDs: [ ]242

Processor 3:

lenSharedNodeIDs: 3

sharedNodeIDs: [ ]865

sharedProcIDs:

















......31

......32

3210

lenSharedProcIDs: [ ]224
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In these shared-node examples, the passed data is presented as sorted by ID, but this
convention is merely to aid in understanding.  Unless otherwise stated explicitly in this
document, no presumption is made in general as to whether the data may arrive in a
sorted or random order.

External nodes are nodes which either:

(a) are involved in local calculations (e.g., appear in local constraint relations) but are not
found in the active node list, or

(b) are in the local active node list and are involved in another processor’s calculations,
but are not in that processor’s active node list.

The initExtNodeSet method must be used to identify external nodes on the owning
processor, as wel as all processors which use them in calculations.  The C++
initExtNodeSet function takes the following form:

int initExtNodeSet(const GlobalID *extNodeIDs,
              int lenExtNodeIDs,

                   const int *const *extProcIDs,
              const int *lenExtProcIDs);

The parameters passed to initExtNodeSet include the following:

• extNodeIDs, the list of external global node IDs in this node set,

• lenExtNodeIDs, the number of external nodes in this list,

• extProcIDs, the table of processor IDs for the external nodes in this nodal list, with
number of rows given by the number of external nodes, and the length of each row
being the number of processors involved in communications for that node, and

• lenExtProcIDs, the length of each list of processor IDs for all of the external nodes in
extNodeIDs list (note: lenExtProcIDs, like extNodeIDs, has a length of
lenExtNodeIDs).

A simple external-node example is shown in Figure 5 below.  This example is taken from
the driver program fei-isis/fei-drivers/distExtBeamDriver.cc, and is developed further in
Chapter 3 of this document.  In the figure below, the three solution field parameters (two
components of displacement, one of rotation) at nodes 2 and 3 are to be made equal
across the boundary of processors 0 and 1, and the development of these constraints
requires specification of external nodes for each processor.
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10 2 3 4 5

processor 0 processor 1
constraint

enforcement

Figure 5: Sample external node geometry

In this example, processor 0 must inform processor 1 of the need for communications
from node 2.  In addition, processor 1 must inform processor 0 of the need to
communicate information relevant to node 3.  Thus each processor must inform the other
of communications that will be required to satisfy the across-processor constraint.  The
form of the required data is presented below, for the case of the particular constraint tying
nodes 2 and 3 together (other constraints may exist, such as one at the right edge of
processor 1, and this additional data is not presented here).

On processor 0, the passed data takes the form:

lenExtNodeIDs: 1

extNodeIDs: [ ]2

extProcIDs: [ ]1

lenExtProcIDs: [ ]1

On processor 1, the passed external node data is given by:

lenExtNodeIDs: 1

extNodeIDs: [ ]3

extProcIDs: [ ]0

lenExtProcIDs: [ ]1

More details on passing external node information can be found by examining the drivers
fei-isis/fei-drivers/distExtBeamDriver.cc and fei-isis/fei-drivers/distExtPenDriver.cc.

The endInitNodeSet method marks the end of the nodal initialization process for a
particular solve step, and this initialization routine is called exactly once for each solve
step.  This terminal initialization method requires no passed parameters, and takes the
following form in C++:

int endInitNodeSets();

2.2.3.5. Constraint Set Initialization

Constraint data passed through the interface can be decomposed into two distinct types:



FEI Annotated Reference Manual Version 1.0 Page 19

• Lagrange multiplier constraints, where additional solution unknowns (namely,
Lagrange multipliers) are appended to the system of equations as a by-product of the
implementation of the individual constraints, and

• penalty constraints, where the underlying finite-element energy functional is
penalized for any lack of constraint satisfaction by adding fictitious energy terms that
do not produce any new solution parameters.

The data that defines these two exclusive constraint types is provided to the interface in
the initialization step via four method calls.  The first and last methods define the
start/end structure of the constraint set initialization process, and are called exactly once
per solve step.  The other two methods are called once per constraint set, and represent
the two types of constraints enumerated above.

The beginInitCREqns method marks the start of the constraint relation (CR)
initialization process for a particular solve step, and this initialization routine is called
exactly once for each solve step.  The C++ form of this function is given by:

int beginInitCREqns(int numCRMultSets, int numCRPenSets);

The parameters passed to beginInitCREqns include:

• numCRMultSets, the number of Lagrange multiplier constraint sets to be passed, and

• numCRPenSets, the number of penalty constraint sets to be passed.

The initCRMult method is called for each local constraint set containing data for
algebraic constraints implemented using Lagrange multipliers.  The C++ version of
initCRMult takes the form below:

int initCRMult(const GlobalID *const *CRNodeTable,
               int *CRFieldList,
               int numMultCRs,
               int lenCRNodeList,
               int& CRMultID);

The parameters passed to initCRMult include the following:

• CRNodeTable, the table of node IDs associated with this constraint, with numCRs
rows and lenCRNodeList columns (each row of this table identifies a list of nodes that
defines a specific constraint),

• CRFieldList, the list of field identifiers associated with each nodal contribution to the
constraint relations (note that nodes can be specified more than once in any given
constraint, so that distinct nodal solution fields can be coerced into satisfaction of
algebraic constraint relations defined by conditions of geometric compatibility).

• numMultCRs, the number of Lagrange multiplier constraints to process in this
particular constraint set,

• lenCRNodeList, the number of columns in CRNodeTable, and
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• CRMultID, a returned constraint set reference identifier to aid in distinguishing the
various constraint sets during subsequent load and solution return phases

More precise definitions of the data that defines the CRNodeTable and CRFieldList data
structures can be found below in the annotation of the associated constraint set load
funtion loadCRMult.

The initCRPen method is called for each local constraint set containing data for
algebraic constraints implemented using a penalty approach. The C++ version of
initCRPen takes the form below:

int initCRPen(const GlobalID *const *CRNodeTable,
              int *CRFieldList,
              int numPenCRs,
              int lenCRNodeList,
              int& CRPenID);

The parameters passed to initCRPen include the following:

• CRNodeTable, the table of node IDs associated with this constraint, with numCRs
rows and lenCRNodeList columns (each row of this table identifies a list of nodes that
defines a specific constraint),

• CRFieldList, the list of field identifiers associated with each nodal contribution to the
constraint relations (note that nodes can be specified more than once in any given
constraint, so that distinct nodal solution fields can be coerced into satisfaction of
algebraic constraint relations defined by conditions of geometric compatibility).

• numPenCRs, the number of penalty constraints to process in this particular constraint
set,

• lenCRNodeList, the number of columns in CRNodeTable, and

• CRPenID, a returned constraint set reference identifier to aid in distinguishing the
various constraint sets during subsequent load and solution return phases.

The endInitCREqns method marks the end of the constraint initialization process for a
particular solve step.  This initialization routine is called exactly once for each solve step.
This terminal initialization method requires no passed parameters. The C++ form of this
function is given by:

int endInitCREqns();

2.2.3.6. Initialization Completion

The initComplete method marks the end of the entire initialization process for a
particular solve step, and this initialization routine is called exactly once for each solve
step. There are no passed parameters associated with this method, and upon calling this
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terminal initialization step, the associated interface implementation is charged with
determining the underlying sparse matrix structure, and then allocating memory for a
sparse matrix to be used in subsequent steps. The C++ form of this function is given by:

int initComplete();

2.2.4. Load Sequence

Where the initialization process permits determination of the matrix structure of the
underlying finite-element equation set, it does not provide for passing any of the values
that populate that matrix.  The task of populating the finite-element system stiffness
matrix and load vector is the responsibility of the load step, and the various load methods
are presented below.  In each case, the method returns an integer-valued error status
indicator, so that each method is of type int.

2.2.4.1. Matrix Reuse Function

The member function resetSystem permits reuse of an existing linear system’s matrix
structure.  This function can be called to permit performing new solves without invoking
the interface implementation’s initialization phase.  In order to utilize this function, the
matrix structure cannot change from the last solve step, so in particular, there must be the
exact same mesh topology, boundary condition format, and number (and type) of
constraint relations.  The last restriction implies that any slide-surface constraint
implementation is unchanged from the last solve step, which places substantial
restrictions on the use of contact/impact/penetration algorithms.  It is the responsibility of
the finite-element developer to insure that all these restrictions are satisfied in practice
before this particular utility function is invoked.

The resetSystem method call uses one passed parameter (by default, set to zero) to
represent the scalar used to fill each matrix entry in the underlying sparse matrix that is to
be reused.  Its C++ form is given by:

int resetSystem(double s=0.0);

2.2.4.2. Node Set Loading

The first stage in performing the load step for a new finite-element equation system
involves passing all the associated boundary-condition information to the interface
implementation.  The boundary-condition information must be passed before the raw
element matrices, so this node set load step precedes the blocked element load process.
This convention arises because the element data does not necessarily contain any
embedded essential boundary-condition data, and hence must be modified in order to
implement essential boundary condition information into the assembled sparse system
stiffness matrix.

There are three general methods used to handle these node set loading tasks:

• the method used to mark the beginning of the node set loading process,
• the iterated method that loads the boundary condition data, and
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• the method used to mark the end of the node set loading process.

The beginLoadNodeSets method marks the start of the nodal data load process for a
particular solve step.  This routine is called exactly once for each solve step, and takes the
following form in C++:

int beginLoadNodeSets(int numBCNodeSets);

The single parameter passed to beginLoadNodeSets is defined as:

• numBCNodeSets, the number of boundary-condition node sets to process for this
solve step on this processor.

The loadBCSet method is called for each node set containing data for nodes associated
with boundary conditions on this processor.

int loadBCSet(const GlobalID *BCNodeSet,
              int lenBCNodeSet,
              int BCFieldID,
              const double *const *alphaBCDataTable,
              const double *const *betaBCDataTable,
              const double *const *gammaBCDataTable);

At this point, it is helpful to include the fundamental description of the generic boundary-
condition representation used in the interface specification.  If the primary field solution
unknown (taken to be a scalar8) is denoted by u, the dual of the solution (e.g., force as
opposed to displacement, heat source as opposed to temperature, etc.) is denoted by q,
and the nodal values of these solution parameters are indicated by a subscript j, then a
generic boundary specification can be given by:

jjjjj qu γβα =+

where αj, βj, and γj are specified constants.

The table below specifies various values for the constants required to produce the three
fundamental types of boundary conditions.

essential αj ≠ 0 βj = 0 γj  arbitrary

natural αj = 0 βj ≠ 0 γj  arbitrary

mixed αj ≠ 0 βj ≠ 0 γj  arbitrary

Appropriate values for these defining constants are passed for each solution component in
the node list through the alphaBCDataTable, betaBCDataTable, and
gammaBCDataTable arrays.

                                                
8 If the solution is vector- or tensor-valued, this parameter should be taken as one component of the vector
nodal solution.
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The parameters passed to loadBCSet include the following:

• BCNodeSet, the list of node IDs for this boundary-condition node set,

• lenBCNodeSet, the length of the BCNodeSet list,

• BCFieldID, the field identifier for the solution component that is being specified,

• alphaBCDataTable, the table of boundary-condition coefficient data for the primary
solution term, with lenBCNodeSet rows, and number of columns given by the field
cardinality of the solution field being specified,

• betaBCDataTable, the table of boundary-condition dual-solution data for the
secondary solution term, with lenBCNodeSet rows, and number of columns given by
the field cardinality of the solution field being specified, and

• gammaBCDataTable, the table of boundary-condition constant data (i.e., non-
homogenous terms that define the boundary condition), with lenBCNodeSet rows, and
number of columns given by the field cardinality of the solution field being specified.

As a simple concrete example, consider the following boundary condition node set,
containing nodes 1, 2, and 3, where each of these nodes has exactly two solution fields:

(a) a vector solution field, representing displacements in the x- and y-directions,
symbolized by u and v, respectively, and

(b) a temperature field defined at the same nodes, symbolized by T.

The general geometric interpretation is diagrammed in Figure 6 below.
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T = 100

Figure 6: Sample boundary-condition geometry

The first field boundary condition to be considered here is that of a fixed edge along
nodes 1, 2, and 3.  This implies that the x- and y-components of displacement both vanish
at each node, and this vector-valued displacement boundary condition can be
implemented using two separate BC sets, namely:

• one set to specify that there is no x-component of displacement at any of the three
nodes, and

• another to specify that there is no y-component of displacement for the node set.
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In the subsequent presentation of the required data structures, recall the field
identification data given in an earlier example from this document, where the displacment
field had an ID of 5, and the temperature field had an ID of 10:

numFields: 2

cardFields: [ ]12

fieldIDs: [ ]105

For the first specification (i.e. the specification of u, the x-component of displacement),
the data passed takes the following form:

BCFieldID = 5

lenBCNodeSet = 3

BCNodeSet: [ ]321

alphaBCDataTable:

















01

01

01

betaBCDataTable:

















00

00

00

gammaBCDataTable:

















00

00

00

Note how each table is three rows long by two columns wide.  This table size arises
because there are three nodes grouped into the single nodeSet, and each nodal field being
specified has two scalar solution components.

The second specification is identical to the first, save for the different values of the
entries in the alphaBCDataTable, which represent the vanishing of the second (i.e., y)
component of displacement instead of the first component:

alphaBCDataTable:

















10

10

10
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The remaining boundary condition specification involves setting of the non-homogenous
temperature condition along nodes 10, 11, and 12.  The required data structures for
implementing this case are given below:

BCFieldID = 10

lenBCNodeSet = 3

BCNodeSet: [ ]121110

alphaBCDataTable:

















1

1

1

betaBCDataTable:

















0

0

0

gammaBCDataTable:

















100

100

100

Note in this thermal specification how each table is three rows long by one column wide,
because the temperature field is a scalar, and hence only possesses one component.

The endLoadNodeSet method marks the end of the nodal load process for a particular
solve step.  This terminal routine is called exactly once for each solve step, and requires
no passed parameters.  It takes the following C++ form:

int endLoadNodeSets();

2.2.4.3. Blocked-Element Loading

The interface implementation is loaded on a block-by-block basis, beginning with the
beginLoadElemBlock method that initiates the blocked-data loading.  There are three
underlying methods used to handle these blocked-element initialization tasks:

• marking the beginning of a blocked-load,

• performing the load of element data, and

• marking the end of a block load.

The beginLoadElemBlock method marks the start of the load process for a particular
block, and this load routine is called only once for each block.  Its C++ form is given by:
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int beginLoadElemBlock(GlobalID elemBlockID,
                       int numElemSets,
                       int numElemTotal);

The parameters passed to beginLoadElemBlock include:

• elemBlockID, the identifier for this particular block.  This GlobalID identifier was
also passed via the blocked-element initialization routine beginInitElemBlock, and is
used here to identify the particular element block,

• numElemSets, the total number of elemSets9 in this block, and

• numElemTotal, the total number of elements in this block.

The loadElemSet method is called for each element set containing data for this particular
block. Its C++ form is given by:

int loadElemSet(int elemSetID,
                int numElems,
                const GlobalID *elemIDs,
                const GlobalID *const *elemConn,
                const double *const *const *elemStiffness,
                const double *const *elemLoad,
                int elemFormat);

The parameters passed to the loadElemSet method include:

• elemSetID, the elemSet identifier for this group of elements,

• numElems, the number of elements in this element set,

• elemIDs, the list of element IDs for this block,

• elemConn, the mesh connectivity (repeated from initElemSet) for this element set,

• elemStiffness, the list of element stiffness matrices for this element set, here stored as
a 3D array whose structure depends upon the elemFormat parameter described below,

• elemLoad, the list of element load vectors, here stored as a matrix, with each row of
the matrix representing a single element’s load vector, and

• elemFormat, a flag to indicate the layout of element stiffness data, including full
square storage of element stiffnesses, or various row-wise packing of symmetric
stiffnesses (this format is intended to be extensible, but the following formats are
implemented in the current version of the specification).

The elemFormat field presently includes the following standard types:

                                                
9 Note that the number of element sets for the load step does not necessarily have to be the same number
used in the initialization step.  In general, these sets may differ in size between the two cases in order to
reflect optimal use of the memory hierarchy by considering the different amounts of data passed during the
initialization and the load steps.
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elemFormat = 0 Dense, non-symmetric storage, where the element matrix is
stored in a row-contiguous manner without any regard for
symmetry.

elemFormat = 1 Packed, upper-symmetric storage, where the upper triangle
of the element stiffness matrix is stored in a row-contiguous
manner.

elemFormat = 2 Packed, lower-symmetric storage, where the lower-triangle
of the element stiffness is stored in a row-contiguous
manner.

elemFormat = 3 Dense, non-symmetric storage, where the element matrix is
stored in a column-contiguous manner without any regard
for symmetry

elemFormat = 4 Packed, upper-symmetric storage, where the upper-triangle
of the element stiffness is stored in a column-contiguous
manner.

elemFormat = 5 Packed, lower-symmetric storage, where the lower-triangle
of the element stiffness is stored in a column-contiguous
manner.

1 2 3 4 5 m

m+1 m+2 m+3

1 2 3 4 5 m

m+1 m+2 m+3

1

2 3

4 5

Figure 7: Row-contiguous base formats for element matrix storage
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Figure 8: Column-contiguous base formats for element matrix storage
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Finally, the endLoadElemBlock method marks the end of the element-block loading
process for a particular block.  This routine is called exactly once for each block.  This
method requires no passed parameters, and takes the following C++ form:

int endLoadElemBlock();

2.2.4.4. Constraint Set Loading

Constraint data is loaded via the two underlying types of constraint relations: (a)
constraints implemented via Lagrange multipliers, and (b) those implemented using a
penalty formulation.  These two classes of constraint enforcement schemes are bracketed
with marking routines to delineate the beginning and end of the constraint loading
process.

The beginLoadCREqns method marks the start of the constraint loading process for a
particular solve step.  This load routine is called exactly once for each solve step, and
takes the following C++ form:

int beginLoadCREqns(int numCRMultSets,
                    int numCRPenSets);

The parameters passed to beginLoadCREqns echo the same parameters passed during
the beginInitCREqns:

• numCRMultSets, the number of Lagrange multiplier constraint sets to be passed, and

• numCRPenSets, the number of penalty constraint sets to be passed.

The loadCRMult method is called for each local constraint set containing data for
algebraic constraints implemented using Lagrange multipliers.  Its C++ form is given
below:

int loadCRMult(int CRMultID,
               int numMultCRs,
               const GlobalID *const *CRNodeTable,
               const int *CRFieldList,
               const double *const *CRWeightTable,
               const double *CRValueList,
               int lenCRNodeList);

The parameters passed to loadCRMult include the following:

• CRMultID, the constraint set reference identifier returned for this constraint set by the
initCRMult initialization method,

• numMultCRs, the number of Lagrange multiplier constraints to process in this
constraint set,

• CRNodeTable, the table of node IDs associated with this constraint, with numCRs
rows and lenCRNodeList columns (each row of this table identifies a list of nodes that
defines the specific constraints),
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• CRFieldList, the list of field identifiers associated with each generic constraint, of
length lenCRNodeList (note that field identifiers can be repeated within this list, if
distinct field components at the same node are to be constrained),

• CRWeightTable, the table of weights associated with this constraint, with
lenCRNodeList rows, and with the number of columns given by the field solution
cardinality at each node in the node table,

• CRValueList, the list of non-homogenous values associated with each constraint,
stored as a vector of length numMultCRs, and

• lenCRNodeList, the number of columns in CRNodeTable.

The following example problem demonstrates loading a simple algebraic constraint.  The
problem modeled is the junction of a beam and a continuum, where the beam elements
possess two solution fields per node (a planar displacement and a scalar out-of-plane
rotation) and the continuum elements have one solution field per node (only the
displacement vector).  The geometry of the problem is shown in Figure 9 below.

1

2

5

4

3 6

7

Block A

2 nodes/elem

2 solution fields:

    displacement (u,v)

    rotation (r)

Block B

4 nodes/elem

1 solution field:

    displacement (u,v)

Figure 9: Example constraint geometry

The constraint embedded in this example is that the rotation field at the lower node of the
beam must be slaved to a linear combination of the normal (vertical) displacements along
the upper edge of the continuum.  The general form of the constraint at the common node
(node 4 in the figure above) is given by:

7744224 vwvwvwr ++=

where the weights wi depend upon the geometry of the continuum elements.  This
constraint can be thus represented in the canonical form given by:

07744224 =−−− vwvwvwr

If the field ID associated with the rotation field is taken as 10 and the field ID associated
with the displacement is given by 5, then the relevant data structures passed to the
loadCRMult method are given by the following:
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NumMultCRs = 1

LenCRNodeList = 4

CRNodeTable = [ ]7424

CRFieldList = [ ]55510

CRWeightTable10 = 



















−
−
−

7

4

2

0

0

0

...1

w

w

w

CRValueList = [ ]0000

The loadCRPen method is called for each local constraint set containing data for
algebraic constraints implemented using a penalty formulation.  The C++ version of the
loadCRPen method is given by:

int loadCRPen(int CRPenID,
              int numPenCRs,
              const GlobalID *const *CRNodeTable,
              const int *CRFieldList,
              const double *const *CRWeightTable,
              const double *CRValueList,
              const double *penValues,
              int lenCRNodeList);

The parameters passed to loadCRPen include the following:

• CRPenID, the constraint set reference identifier returned for this constraint set by the
initCRPen initialization method,

• numPenCRs, the number of penalty constraints to process in this constraint set,

• CRNodeTable, the table of node IDs associated with this constraint, with numCRs
rows and lenCRNodeList columns (each row of this table identifies a list of nodes that
defines the specific constraints),

• CRFieldList, the list of field identifiers associated with each generic constraint, of
length lenCRNodeList (note that field identifiers can be repeated within this list, if
distinct field components at the same node are to be constrained),

                                                
10 The ellipsis (…) in the table represents an entry that is not defined.  Because the first row has only one
column and the remaining rows have two columns, the ellipsis indicates that there is no second column in
the first row.  This device thus represents an attempt to cast these non-constant-length tabular data
structures into a matrix form more suitable for typesetting.
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• CRWeightTable, the table of weights associated with this constraint, with
lenCRNodeList rows, and with the number of columns given by the field solution
cardinality at each node in the node table,

• CRValueList, the list of non-homogenous values associated with each constraint,
stored as a vector of length numPenCRs,

• penValues, the list of penalty values to be used for each constraint in the set, and

• lenCRNodeList, the number of columns in CRNodeTable.

The endLoadCREqns method marks the end of the constraint loading process for a
particular solve step.  This routine is called exactly once for each solve step.  This
terminal constraint loading method requires no passed parameters, and takes the
following C++ form:

int endLoadCREqns();

2.2.4.5. Load Step Completion

The loadComplete method marks the end of the entire loading process for a particular
solve step, and is called exactly once for each load phase.  The loadComplete method
takes no parameters, and takes the following C++ form:

int loadComplete();

2.2.5. Solution

The solution phase is where the linear equation solver is invoked.  This step in the overall
calling sequence therefore generally requires solver-specific parameters in order to solve
the assembled finite-element equations.  The parameters method permits setting these
solver-specific terms, and takes the following C++ form:

void parameters(int numParams,
                char **paramStrings);

The arguments passed to the parameters method include the following:

• numParams, the number of  parameters to be passed, and

• paramStrings, the list of numParams strings to be decoded by the solver for
determining appropriate solution control.

An example of a call to the parameters method is given below, taken from the example
problems presented later in this document.

numParams = 6;
char **paramStrings = new char*[numParams];
for(int i = 0; i < numParams; i++)
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    paramStrings[i] = new char[64];

strcpy(paramStrings[0],"solver qmr");
strcpy(paramStrings[1],"preconditioner diagonal");
strcpy(paramStrings[2],"maxIterations 500");
strcpy(paramStrings[3],"tolerance 1.e-10");
strcpy(paramStrings[4],"rowScale false");
strcpy(paramStrings[5],"colScale false");

linearSystem.parameters(numParams, paramStrings);

Here, the QMR solver is utilized, which is appropriate for unsymmetric or indefinite
systems.  A diagonal preconditioner is invoked, with no additional row or column
scaling.  The ISIS++ package is utilized, so the strings passed represent standard ISIS++
solution commands, and a different solution module would require different numbers and
types of strings.

The iterateToSolve method invokes the underlying solution modules, which then solve
the system defined during the initialization and load phases, under the guidance of the
solution control data passed via the parameters method.  The iterateToSolve method
requires no arguments, and takes the following C++ form:

int iterateToSolve();

Utility functions provided by the finite-element interface specification in order to support
the solution process include various methods to pass initial solution vector estimates to
the solver module.  These methods are discussed below, under the general topic of utility
functions.

2.2.6. Solution Return

Upon return from the iterateToSolve method, the solution components need to be
returned to the client finite-element program.  The interface specification provides a
number of schemes for returning these solution parameters.

2.2.6.1. Blocked Solution Return Functions

The element block structure represents a fundamental subdivision of the finite-element
mesh on a given processor.  Therefore, this block structure provides a natural means to
return the solution to the client finite-element program on a block-by-block basis.  There
are two classes of blocked-solution return functions: (a) one to return the nodal solution
parameters for all nodes in the given block’s active node list, and (b) one to return the
elemental solution parameters for a given block.  The first class of blocked-solution
return function has two further subdivisions: (i) methods that return all the solution
parameters associated with each node in the active node list, and (ii) methods that return
only the solution parameters associated with a given field identifier.  For the first class of
solution return, the collection of nodal solution parameters is provided in the field order
dictated by the finite-element client in the corresponding call to beginInitElemBlock.
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The getBlockNodeSolution method returns all the nodal solution parameters associated
with a given block (i.e., the one identified with elemBlockID).  Because there is no
unique way to construct the active node list for a block, this method returns a copy of the
active node list so as to facilitate associating the returned solution parameters with their
corresponding nodes.  The C++ version of getBlockNodeSolution is of the following
form:

int getBlockNodeSolution(GlobalID elemBlockID,
                         GlobalID *nodeIDList,
                         int &lenNodeIDList,
                         int *offset,
                         double *results);

The parameters associated with getBlockNodeSolution include the following:

• elemBlockID, the element block identifier for this solution list,

• nodeIDList, the returned list of nodes associated with this block (no particular order
should be presumed here),

• lenNodeIDList, the length of nodeIDList (returned, but also available via a call to the
utility function getNumBlockActNodes),

• offset, the list of index offsets to the first answer at each node (this list is of length
lenNodeIDList+1, so that the block view of nodal solution cardinality can be
recovered for every node by subtracting the nodes’ offset from the next consecutive
larger offset value), and

• results, the list of raw solution parameters at appropriate offsets.  This list has length
equal to the sum of all the solution cardinalities over the lenNodeIDList nodes that
comprise the active node list.

The getBlockFieldNodeSolution method is similar to getBlockNodeSolution, except
that the former returns only the solution parameters associated with a given field
identifier fieldID.

The C++ version of getBlockFieldNodeSolution takes the following form:

int getBlockFieldNodeSolution(GlobalID elemBlockID,
                              int fieldID,
                              GlobalID *nodeIDList,
                              int& lenNodeIDList,
                              int *offset,
                              double *results);

The data structures required for getBlockFieldNodeSolution are not enumerated here, as
they are otherwise the same as those needed by getBlockNodeSolution.

It should be noted that the calling finite-element program is charged with the
responsibility of allocating memory for each of the four lists used in the
getBlockNodeSolution and getBlockFieldNodeSolution calls, including providing the
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additional storage entry needed for the offset vector.  In order to assist the finite-element
developer in determining these storage needs, the utility functions
getNumBlockActNodes and getNumBlockActEqns are provided in the interface
specification.  These two utility functions take as an argument the element block
identifier, and return (respectively) the number of active nodes and equations associated
with that element block.

The getBlockElemSolution method returns all the elemental solution parameters
associated with a given block (i.e., the one identified with elemBlockID).  Its C++ form is
given by:

int getBlockElemSolution(GlobalID elemBlockID,
                         GlobalID *elemIDList,
                         int& lenElemIDList,
                         int *offset,
                         double *results,
                         int& numElemDOF);

The parameters associated with getBlockElemSolution are the following:

• elemBlockID, the block identifier for this solution list,

• elemIDList, the returned list of elements associated with this block,

• lenElemIDList, the returned length of elemIDList,

• offset, the returned list of index offsets to the first answer in each element,

• results, the returned list of raw elemental solution parameters (of length
lenElemIDList*numElemDOF), and

• numElemDOF, the returned number of solution unknowns per element in this block.

In order to simplify allocation of memory for the arrays associated with this call, the
utility routine getNumBlockElements is provided to return the number of elements
associated with a given elemBlockID.

2.2.6.2. Constraint Parameter Return Functions

Constraint relations may or may not cause additional solution parameters to be appended
to the underlying equation set, as the Lagrange multipliers represent new equations while
the penalty numbers do not.  The Lagrange multipliers associated with a given constraint
block are returned via the getCRMultParam method.  Its C++ form is given by:

int getCRMultParam(int CRMultID,
                   int numMultCRs,
                   double *multValues);

The parameters passed to getCRMultParam include the following:

• CRMultID, the constraint set reference identifier returned for this constraint set by the
initCRMult initialization method,
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• numMultCRs, the number of Lagrange multiplier constraints in this particular
constraint set, and

• multValues, the returned list of Lagrange multiplier values for this constraint set that
were computed during the solve step.  This list has length numMultCRs.

A similar method provides all the Lagrange multipliers associated with a given processor,
and this getCRMultSolution method represents a collective version of
getCRMultParam.  The C++ form of getCRMultSolution is given by:

int getCRMultSolution(int& numCRMultSets,
                      int *CRMultIDs,
                      int *offset,
                      double *results);

The parameters associated with getCRMultSolution include:

• numCRMultSets, the total number of Lagrange multiplier constraint sets on this
processor (this is a return value),

• CRMultIDs, the returned list of constraint set reference identifiers associated with the
collection of all the Lagrange multiplier constraint sets on this processor,

• offset, the returned list of index offsets to the first Lagrange multiplier in each
constraint block (the offset list has length numCRMultSets and is allocated by the
user’s code), and

• results, the returned list of raw Lagrange multiplier solution parameters (this list has
length equal to the sum of the number of constraints numMultCRs taken over all
numCRMultSets lying on this processor, and is allocated by the user’s code)

Allocating memory for these arrays is simplified via the use of the getCRMultSizes
utility function, which returns the number of Lagrange multiplier constraint sets
(numCRMultIDs), as well as the required length of the results vector (lenResults).

int getCRMultSizes(int& numCRMultIDs,
                   int& lenResults);

2.2.7. Utility Functions

Utility functions are included in the interface specification to aid in querying the interface
layer for data that may be useful at various stages of the solution process.  In addition to
these query functions, utilities are provided to permit passing initial solution vector
estimates from the finite-element client application to the solver module.

2.2.7.1. Interface Internal Query Functions

In order to facilitate the use of the interface implementation, a number of “read-only”
utility functions are provided to aid the finite-element developer in determining key
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control parameters that can be used for allocation of memory or for program execution.
These utility functions, which generally take some form of identifier, and return an
internal parameter associated with that identifier, are catalogued below.  In case of error,
each method returns a value of –1.

The utility method getNumSolnParams returns the nodal solution cardinality (i.e., the
total number of solution parameters defined at a node) associated with the node
globalNodeID.

int getNumSolnParams(GlobalID globalNodeID);

The utility method getNumElemBlocks returns the number of element blocks on the
local processor.

int getNumElemBlocks();

The utility method getNumBlockActNodes returns the number of active nodes
associated with a given element block.

int getNumBlockActNodes(GlobalID blockID);

The utility method getNumBlockActEqns returns the number of active equations
associated with a given element block.

int getNumBlockActEqns(GlobalID blockID);

The utility method getNumNodesPerElement returns the number of nodes associated
with each element of a given block.

int getNumNodesPerElement(GlobalID blockID);

The utility method getNumEqnsPerElement returns the number of equations (including
both nodal and elemental solution parameters) associated with each element of a given
block.

int getNumEqnsPerElement(GlobalID blockID);

The utility method getNumBlockElements returns the number of elements associated
with a given element block.

int getNumBlockElements(GlobalID blockID);

The utility method getNumBlockElemEqns returns the number of element equations
associated with each element in a given element block.

int getNumBlockElemEqns(GlobalID blockID);

The utility method getBlockNodeIDList returns the list of active nodes associated a
given element block (see the related solution return function getBlockNodeSolution for
an explanation of the parameters passed).
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int getBlockNodeIDList(GlobalID elemBlockID,
                       GlobalID *nodeIDList,
                       int& lenNodeIDList);

The utility method getBlockElemIDList returns the list of elements associated a given
element block (see the related solution return function putBlockElemSolution for an
explanation of the parameters passed).

int getBlockElemIDList(GlobalID elemBlockID,
                       GlobalID *elemIDList,
                       int& lenElemIDList);

2.2.7.2. Solution Initial Estimate Functions

The following functions are provided to aid the developer in passing initial solution
vector estimates to the solver.  These three functions can be used to pass any or all of the
following components of a solution vector:

• the nodal solution parameters associated with a given block of elements,

• the element solution parameters associated with a given block of elements, and

• the Lagrange multipliers associated with a given constraint set.

In each case, the arguments are similar to those found in the associated “get” functions
outlined in the solution return section above.

The initial estimate method putBlockNodeSolution provides a means for the finite-
element program to pass initial estimates for nodal solution parameters on a block-by-
block basis.  The passed parameters are similar to the getBlockNodeSolution call, and
the various arrays required can be allocated using information obtained from utility
method calls, such as getBlockNodeIDList.  The C++ form of getBlockNodeSolution is
given by the following form:

int putBlockNodeSolution(GlobalID elemBlockID,
                         const GlobalID *nodeIDList,
                         int lenNodeIDList,
                         const int *offset,
                         const double *estimates);

The related method putBlockFieldNodeSolution is similar to putBlockNodeSolution,
except that it restricts the initial estimate only to one field, given by the fieldID field
identification parameter provided in its argument list.   Its C++ form is given by:

int putBlockFieldNodeSolution(GlobalID elemBlockID,
                              int fieldID,
                              const GlobalID *nodeIDList,
                              int lenNodeIDList,
                              const int *offset,
                              const double *estimates);
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The initial estimate method putBlockElemSolution provides a means for the finite-
element program to pass initial estimates for elemental solution parameters on a block-
by-block basis.  The passed parameters are similar to the getBlockElemSolution call,
and the various arrays required can be allocated using information obtained from utility
method calls, such as getBlockElemIDList. Its C++ form is given by:

int putBlockElemSolution(GlobalID elemBlockID,
                         const GlobalID *elemIDList,
                         int lenElemIDList,
                         const int *offset,
                         const double *estimates,
                         int numElemDOF);

The initial estimate method putCRMultParam provides a means for the finite-element
program to pass initial estimates for Lagrange multipliers for each constraint set.  The
C++ form of putCRMultParam is given by:

int putCRMultParam(int CRMultID,
                   int numMultCRs,
                   const double *multEstimates);

2.2.8. Other Functions

In order to facilitate extending this interface specification into new venues of finite-
element modeling or solver technology, various new functions may be added, or existing
functions generalized via overloading.  In particular, there are currently underway efforts
to add support for multilevel solution techniques and to generalize some of the existing
functions to provide support for eigensolution and multiple load vectors

One example is given by the iterations function, which returns the number of iterations
required by the solver to converge to a solution (or to fail to converge, if a solution was
not found).  The C++ form of the iterations function is given below:

int iterations();

The iterations function takes no arguments, and returns the number of iterations,
provided this function is supported by the underlying solver package.
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3. Example Problems
Two classes of example problems are presented in this section:

• sample problems that demonstrate how the interface is utilized, using a simple
motivating physical problem, and replete with plenty of sample C++ code, and

• more complex problem fragments that do not include sample code, but do provide
insight on the structure of the data used to implement more complicated multiphysics
simulations.

The first class of problems serves as a necessary introduction to the effective use of the
interface, but the sample problems are simple enough so that the resulting finite-element
client code will fit within this document.  Hence this first class of example problems is
simpler than most practical finite-element analysis codes.  The second class of problems
provides more complex examples that better represent high-performance finite-element
simulations commonly encountered in engineering practice.

3.1. Sample Problems Demonstrating the Interface Calling Architecture

Three sample problems are presented in this section to aid developers in learning how to
utilize the finite-element solution interface.  The problems are designed for simplicity in
each aspect that is not tightly coupled to the particulars of the process of solving finite-
element equations, in order to simplify learning how the solver interface works.  These
restrictions include:

• one-dimensional geometry, so that the generally complicated (and highly problem-
and program-dependent) relationship between node and element numbering can be
avoided, and replaced with an explicit closed-form relationship between the node
identifiers and the element identifiers,

• a constant solution cardinality for each node, which simplifies the sample programs
by permitting considerable generic coding practice,

• a simplified version of constraint implementation, where the general linear constraint
relations are utilized only to slave individual nodes to others in a simple single-
master/single-slave setting, and

• no elemental solution parameters, so that all the solution unknowns are either nodal
quantities, or (in the case of the distributed problem where the various domains are
welded together with Lagrange multiplier constraints) Lagrange multipliers arising
from a master/slave nodal constraint.

Even with these simplifying principles, these three sample problems illustrate a wide
variety of finite-element development concepts that are implemented using the finite-
element/solver interface specification.  Thus these simple programs form a useful tool for
understanding the design and philosophy of the interface specification.

3.1.1. Uniprocessor Beam Example

This simplest example problem is presented to serve as an introduction to the more
complicated parallel versions that follow.  Therefore, the generic aspects of the sample
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problems are presented in the uniprocessor case, so that the parallel version can be
utilized to focus on the particular details of multiprocessor use of the interface.

The uniprocessor problem models the flexure of a simple cantilever beam under a
uniform self-weight transverse load.  The relevant problem geometry is shown in Figure
10 below, where the particular mesh used has nine nodes and eight elements.  The
general relationship between nodes and elements in this case is that there is one more
node than the number of elements.  This mesh, or its obvious generalizations, will be
used for all of the sample problems presented here.

Load P

Length L

Bending Stiffness EI

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 Element ID

Node  ID

Figure 10: Cantilever beam example with associated uniprocessor mesh

After reading the parameters defining the mesh, the uniprocessor program determines a
strategy to divide up the elements equitably across the range of element blocks, and then
calculates element and node information for each block.  The task of subdividing the
mesh among the processors is performed by the block_strategy procedure, which
allocates elements to processors so that the number of elements per block is relatively
constant over all the elements.  The details of this program can be found in the driver
source file fei-isis/fei-drivers/distBeamDriver.cc, which provides both uniprocessor and
shared-node multiprocessor testing for the FEI implementation.

block_strategy(myNumElements, myNumElemBlocks, elemsPerBlock);
int sumElem = 0;
for (i = 0; i < myNumElemBlocks; i++) {

startElem[i] = sumElem;
endElem[i] = startElem[i] + elemsPerBlock[i] - 1;
startNode[i] = startElem[i];
endNode[i] = endElem[i] + 1;
nodesPerBlock[i] = elemsPerBlock[i] + 1;
sumElem += elemsPerBlock[i];

}

Once these base parameters for each element block have been computed, node
(FE_Node) and element (FE_Elem) objects can be initialized, as can be seen in the
source file fei-isis/fei-drivers/distBeamDriver.cc.  In this driver program, a beam is
modeled of length 10.0 with bending stiffness EI, axial stiffness EA, and applied
transverse/longitudinal loads qLoad and pLoad, respectively.  The element type utilized
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is the usual 3-DOF/2-Node Hermitian cubic beam approximation.  The various node and
element class methods perform such tasks as assigning node and element ID’s, setting the
nodal solution cardinality and node location, assigning element beam and load properties,
and other essential tasks.

Once these defining parameters have been set, the finite-element interface can be called
for initialization purposes:

ISIS_SLE linearSystem(0);

myErrorCode = linearSystem.initSolveStep(myNumElemBlocks,
                                         mySolvType);
myErrorCode = linearSystem.initFields(myNumFields,
                                      myCardFields,
                                      myFieldIDs);

Note that error handling code is not presented here, in the interest of brevity.

Following the overall initialization step, the interface node and element initialization
steps are called.  In the code sample below, the element initialization process is shown,
and a similar iteration is used to initialize the nodal data.

myNumElems = localElemsPerBlock;
myNumElemTotal = myNumElems;
myErrorCode = linearSystem.beginInitElemBlock(myElemBlockID,
                                              myNumNodesPerElem,
                                              myNumElemFields,
                                              myElemFieldIDs,
                                              myStrategy,
                                              myNumElemDOF,
                                              myNumElemSets,
                                              myNumElemTotal);

//  for now, to keep things simple, just use one element set per block...

myElemIDs = new GlobalID[myNumElems];
myElemConn = new GlobalID* [myNumElems];

int ntest;
for (k = 0; k < myNumElems; k++) {
    myElemIDs[k] = localStartElem + (GlobalID)k;
    myElemConn[k] = new GlobalID[myNumNodesPerElem];
    myLocalElements[k].returnNodeList(ntest, myElemConn[k]);
}
myErrorCode = linearSystem.initElemSet(myNumElems,
                                       myElemIDs,
                                       myElemConn);

myErrorCode = linearSystem.endInitElemBlock();

Upon completion of all initialization calls, the initComplete method is invoked to advise
the solver of the structure of the matrix implicitly defined by the initialization calls.

myErrorCode = linearSystem.initComplete();

The load process proceeds in a manner similar to that of the initialization process, except
that the particular arrays defining the boundary conditions and the element matrices are
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passed.  The boundary condition data is only required at the left endpoint of the beam,
and the appropriate parameters for this beam problem are defined via the following
initializations, which are applied only at node zero, representing the left end of the beam.
Since the 3-DOF beam approximation can be modeled either as a single field consisting
of 2 displacements and a rotation, or as two solution fields consisting of a plane
displacement field and an out-of-plane scalar rotation parameter, the number of fields
present in the sample problem is represented by the integer myNumFields.

for (k = 0; k < myNumFields; k++) {
    myAlphaTable= new double* [myLenBCNodeSet[k]];
    myBetaTable = new double* [myLenBCNodeSet[k]];
    myGammaTable = new double* [myLenBCNodeSet[k]];
    for (j = 0; j < myLenBCNodeSet[k]; j++) {
        myAlphaTable[j] = new double[myNumFieldParams[k]];
        myBetaTable[j] = new double[myNumFieldParams[k]];
        myGammaTable[j] = new double[myNumFieldParams[k]];
    }
    for (i = 0; i < myLenBCNodeSet[k]; i++) {
        for (j = 0; j < myNumFieldParams[k]; j++) {
            myAlphaTable[i][j] = 1.0;
            myBetaTable[i][j] = 0.0;
            myGammaTable[i][j] = 0.0;
        }
    }
    myErrorCode = linearSystem.loadBCSet(myBCNodeSet,
                                         myLenBCNodeSet[k],
                                         myBCFieldID[k],
                                         myAlphaTable,
                                         myBetaTable,
                                         myGammaTable);
}

A series of loadElemSet calls passes the element arrays to the solver, but as this iteration
is similar to the element initialization process shown above, it is not presented here.
When the load step is complete, the interface method loadComplete is invoked, to advise
the interface implementation that the finite-element equation set is now completely
defined and may be prepared for solution.

myErrorCode = linearSystem.loadComplete();

Once the load step is complete, the solution process can be invoked.  This step requires
passing solver-dependent parameters through the interface to the solution services
module via the parameters method.  The solution process is then initiated using the
iterateToSolve method.  The parameters interface call shown below represents the
choice of parameters appropriate for use with the ISIS++ [Clay, Mish, and Williams
1997] solution module.  Other implementations of the interface, such as versions required
for use with AZTEC [Hutchinson, et.al., 1995] can be constructed and/or implemented
using the appropriate solver module documentation set.  In the source fragment below,
the QMR solver is utilized, as this solution algorithm can be applied over the entire range
of example problems, including the indefinite equation set underlying the external-node
Lagrange-multiplier parallel driver fei-isis/fei-drivers/distExtBeamDriver.cc.

int ii, numParams = 6;
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char **paramStrings = new char*[numParams];
for(ii = 0; ii < numParams; ii++) paramStrings[ii] = new char[64];

strcpy(paramStrings[0],"solver qmr");
strcpy(paramStrings[1],"preconditioner diagonal");
strcpy(paramStrings[2],"maxIterations 50000");
strcpy(paramStrings[3],"tolerance 1.e-10");
strcpy(paramStrings[4],"rowScale false");
strcpy(paramStrings[5],"colScale false");

linearSystem.parameters(numParams, paramStrings);

linearSystem.iterateToSolve();

Once the solution process has been completed, the solution-return methods can be
invoked to return the various classes of solution parameters (e.g., nodal, elemental,
Lagrange constraint terms) desired.  The following code fragment demonstrates the
allocation and return (getBlockNodeSolution) of the nodal solution parameters for each
block used in the sample mesh.

double *mySolnValues;
int *mySolnOffsets;
GlobalID *myNodeList;
int myLenList;
int j = myElemBlockID;

int myNumBlkActNodes = linearSystem.getNumBlockActNodes(j);
int myNumBlkActEqns = linearSystem.getNumBlockActEqns(j);
myNodeList = new GlobalID[myNumBlkActNodes];
mySolnOffsets = new int[myNumBlkActNodes];
mySolnValues = new double[myNumBlkActEqns];

linearSystem.getBlockNodeSolution(j, myNodeList, myLenList,
                                  mySolnOffsets, mySolnValues);

The solution-return calls form the end of the finite-element interface logic in this
uniprocessor driver program. The finite-element developer interested in using this
interface layer is strongly urged to consider this uniprocessor driver (and its parallel
shared-node implementation) fei-isis/fei-drivers/distBeamDriver.cc in detail, including
browsing the associated driver source code for details not presented in the discussion
above.  In the following parallel examples, only the relevant differences associated with
the underlying parallel program architecture will be shown.  This more concise
presentation provides another good reason for the finite-element developer to study the
uniprocessor problem in appropriate detail.

3.1.2. Shared-Node Parallel Example (8 Elements)

The shared-node parallel sample problem geometry for the case of four processors, eight
elements and nine nodes is shown in Figure 11 below.  Since there is a unique shared
node located at each processor boundary, the finite-element approximation is already
shared between adjacent processors, so no discrete constraint relations need to be
enforced at interprocessor boundaries.  The generation of constraint relations to match
adjacent finite-element approximations for non-shared nodes is the subject of the
external-node parallel example that follows.
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Figure 11: Mesh and processor geometry for shared-node parallel example

The most important difference between the uniprocessor example and this shared-node
parallel case is that the parallel SPMD computation is implemented by having the
“master” processor divide the beam into elements and element blocks, and then hand off
each block to a separate processor.  This necessitates some initial communications to pass
basic element topology information (such as the number of nodes and elements to be
found on each processor, and their start/end ID’s), as shown in the following code
fragments.  It should be noted that in a production finite-element setting, a separate
domain-decomposition application is generally used  a priori to partition the mesh, and
this approach obviates the need for the “master processor” required in the driver.

//  send all this overhead data to the various processors and then
//  parallel computation can get done...

for (i = 1; i < myNumElemBlocks; i++) {
MPI_Send(&myNumElements, 1, MPI_INT, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&myNumElemBlocks, 1, MPI_INT, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&startElem[i], 1, MPI_GLOBALID, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&endElem[i], 1, MPI_GLOBALID, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&elemsPerBlock[i], 1, MPI_INT, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&startNode[i], 1, MPI_GLOBALID, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&endNode[i], 1, MPI_GLOBALID, i, s_tag1, MPI_COMM_WORLD);
MPI_Send(&nodesPerBlock[i], 1, MPI_INT, i, s_tag1, MPI_COMM_WORLD);

}

//  if I’m not the master, receive the data sent by the master CPU...

MPI_Recv(&myNumElements, 1, MPI_INT, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&numBlocks, 1, MPI_INT, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&localStartElem, 1, MPI_GLOBALID, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&localEndElem, 1, MPI_GLOBALID, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&localElemsPerBlock, 1, MPI_INT, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&localStartNode, 1, MPI_GLOBALID, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&localEndNode, 1, MPI_GLOBALID, masterRank, s_tag1,
MPI_COMM_WORLD, &status);

MPI_Recv(&localNodesPerBlock, 1, MPI_INT, masterRank, s_tag1,
MPI_COMM_WORLD, &status);



FEI Annotated Reference Manual Version 1.0 Page 45

The next relevant difference between the uniprocessor and parallel/shared-node case
arises from the fact that the shared nodes must be identified via appropriate interface
calls.  The shared-node parallel driver aids in this step by considering the various ways
that shared nodes arise from blocks at either end of the problem (which have only one set
of shared nodes), or from internal blocks (which have two sets, one at each end).  The
requisite logic is shown in the code sample below, where the localRank parameter defines
the processor ID.

    if (numProcessors == 1) {
        numSharedNodes = 0;
    }
    else if (localRank == 0) {
        numSharedNodes = 1;
        listSharedNodes = new GlobalID[numSharedNodes];
        listSharedProcs = new int* [numSharedNodes];
        listSharedProcs[0] = new int [2];
        listSharedNodes[0] = localEndNode;
        listSharedProcs[0][0] = localRank;
        listSharedProcs[0][1] = localRank + 1;
    }
    else if (localRank == (numProcessors - 1)) {
        numSharedNodes = 1;
        listSharedNodes = new GlobalID[numSharedNodes];
        listSharedProcs = new int* [numSharedNodes];
        listSharedProcs[0] = new int [2];
        listSharedNodes[0] = localStartNode;
        listSharedProcs[0][0] = localRank - 1;
        listSharedProcs[0][1] = localRank;
    }
    else {
        numSharedNodes = 2;
        listSharedNodes = new GlobalID[numSharedNodes];
        listSharedProcs = new int* [numSharedNodes];
        listSharedProcs[0] = new int [2];
        listSharedProcs[1] = new int [2];
        listSharedNodes[0] = localStartNode;
        listSharedNodes[1] = localEndNode;
        listSharedProcs[0][0] = localRank - 1;
        listSharedProcs[0][1] = localRank;
        listSharedProcs[1][0] = localRank;
        listSharedProcs[1][1] = localRank + 1;
    }

The arrays defined in this code fragment aid the driver in determining which nodes are
shared, and these arrays are converted to the form required by the finite-element interface
implementation via the following logic.

//  pass the shared node data (each shared node is shared between two CPU's)

for (i = 0; i < myNumSharedNodeSets; i++) {
myLenSharedNodeSet = numSharedNodes;
mySharedNodes = new GlobalID[myLenSharedNodeSet];
myLenSharedProcIDs = new int[myLenSharedNodeSet];
mySharedProcIDs = new int* [myLenSharedNodeSet];

for (j = 0; j < myLenSharedNodeSet; j++) {
mySharedNodes[j] = listSharedNodes[j];
myLenSharedProcIDs[j] = 2;
mySharedProcIDs[j] = new int[myLenSharedProcIDs[j]];
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for (k = 0; k < myLenSharedProcIDs[j]; k++) {
mySharedProcIDs[j][k] = listSharedProcs[j][k];

}
}

//  FE interface call ----------------------------------------------

myErrorCode = linearSystem.initSharedNodeSet(mySharedNodes,
                                                  myLenSharedNodeSet,
                                                  mySharedProcIDs,
                                                  myLenSharedProcIDs);

delete [] mySharedNodes;
for (j = 0; j < myLenSharedNodeSet; j++) {

delete [] mySharedProcIDs[j];
}
delete [] mySharedProcIDs;

}

The rest of the shared-node/parallel driver program is similar to the uniprocessor example
case, including the solution invocation and solution return steps.  Therefore, these
redundant code components are not shown here.

The shared-node parallel problem demonstrates overall SPMD utilization of the interface
implementation, but it misses some important areas of the interface code.  In particular,
the shared-node problem does not exercise any portions of the interface layer that
implement constraint equations.  These methods are presented in the next example.

3.1.3. External-Node Parallel Example (8 Elements)

In order to examine the interface layer’s handling of distributed-memory constraint
relations, a similar beam problem can be modeled, but this more complex example does
not utilize shared-node logic to enforce solution compatibility across processor
boundaries.  Instead, each processor has a completely separate component of the finite-
element mesh, and the solution is constrained across processor boundaries by discrete
constraint relations (using either the Lagrange multiplier or penalty constraint handling
facilities of the interface, in the source files fei-isis/fei-drivers/distExtBeamDriver.cc and
fei-isis/fei-drivers/distExtPenDriver.cc, respectively) on the displacement and slope at
each inter-processor junction.  The general topology of a four-processor/eight-
element/twelve-node mesh is shown in Figure 12 below.

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 Element ID

Node  ID

Proc 1 Proc 2 Proc 3 Proc 4

9 10 11

Figure 12: Mesh and processor geometry for external-node, parallel example

The main differences between this example and the previous cases are the following:
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• this external-node example involves a slightly more complex node-numbering
scheme, as the simple “off-by-one” relationship between nodes and elements present
in the shared-node and uniprocessor cases does not apply,

• logic is required to determine the data required to identify and to initialize the
external nodes found at the boundaries of each block, and

• there are two field constraints at each block junction, one enforcing displacement
continuity and the other enforcing slope continuity.

The first difference is easy to develop, so it will not be treated further here.  The second
and third cases will be briefly outlined below with sample code from the driver. The
nodal data initialization pass requires specification of the fixed-end boundary conditions
at node 0, as well as the identification of external node sets for each block of elements.
There are two sets of external nodes arising from the constraints (one at each end) for
each internal element, and one set for blocks at either endpoint, as can be seen from the
following code fragment.

if (numProcessors == 1) {
    myNumExtSendNodeSets = 0;
    myNumExtRecvNodeSets = 0;
}
else if (localRank == 0) {
    myNumExtSendNodeSets = 0;
    myNumExtRecvNodeSets = 1;
}
else if (localRank == (numProcessors - 1)) {
    myNumExtSendNodeSets = 1;
    myNumExtRecvNodeSets = 0;
}
else {
    myNumExtSendNodeSets = 1;
    myNumExtRecvNodeSets = 1;
}
int myNumExtNodeSets = myNumExtSendNodeSets + myNumExtRecvNodeSets;
myErrorCode = linearSystem.beginInitNodeSets(myNumSharedNodeSets,
                                             myNumExtNodeSets);

Identification of the external nodes involves logic similar to that for the shared-node case,
so this process is not presented here.  The actual constraint logic (for the case of a single
solution field representing all three solution parameters, with each component of the
solution tied across processor boundaries with a separate constraint) is outlined below.

if (myNumCRMultSets > 0) {
    myNumCRs = 1;          // 1 eqn (disp or slope) in each constraint set
    myLenCRList = 2;       // 2 nodes (one per block) in each constraint
    myCRMultIDList = new int[myNumCRMultSets];
    myCRMultFieldIDList = new int [myLenCRList];
    myCRMultFieldIDList[0] = myFieldIDs[0];   // here, tie the same field
    myCRMultFieldIDList[1] = myFieldIDs[0];   // at each end...
    for (j = 0; j < myNumCRMultSets; j++) {
        myCRNodeTable = new GlobalID* [myNumCRs];
        for (k = 0; k < myNumCRs; k++) {
            myCRNodeTable[k] = new GlobalID[myLenCRList];
            myCRNodeTable[k][0] = localEndNode;
            myCRNodeTable[k][1] = localEndNode;
            myCRNodeTable[k][1]++;



FEI Annotated Reference Manual Version 1.0 Page 48

        }
        myErrorCode = linearSystem.initCRMult(myCRMultIDList[j],
                                              myCRNodeTable,
                                              myCRMultFieldIDList,
                                              myNumCRs,
                                              myLenCRList);

        for (i = 0; i < myNumCRs; i++) {
            delete [] myCRNodeTable[i];
        }
        delete [] myCRNodeTable;
    }
}

Similar logic is used in the load step to handle the weights required to implement the
constraint, each of which is of the general form given by:

rightleft uu = or 0=− rightleft uu

where the subscripts left and right indicate the nodes located on the left and right sides of
the interprocessor node-numbering gaps, and the solution parameter u is taken either as
the transverse displacement, axial displacement, or the out-of-plane rotation.

Other than these differences, this external node sample problem is similar to the shared-
node parallel example.

Because each constraint involves a combination of nodes local to and external to any
given processor, this example not only demonstrates general constraint implementation,
but also the associated external-node, distributed-memory logic to handle off-processor
communications.  For the Lagrange multiplier version of the constraint relations, the
resulting multipliers represent physically important parameters (in this case, the internal
forces in the beam at the points where the continuity constraints are applied).  So, this
external node test problem also demonstrates the solution return functions for Lagrange
multiplier constraint sets.

3.2. Sample Problem Results

Results from the sample problems are shown in the figures below, for the case of the
external node problem with two constraints per node (transverse displacement and out-of-
plane rotation) and eight elements located on four processors.  Figure 13 shows the
transverse beam displacement, while Figure 14 graphs the beam rotation.  Both of these
solution parameters agree perfectly with the theoretical results, which are plotted as solid
lines in these figures – this agreement is an example of the well-known finite-element
characteristic of superconvergence, which is a property of the underlying finite-element
model, and not of any interface construct. Details on superconvergence, or on other
aspects of finite-element approximation can be found in a variety of references, including
the textbooks of Hughes [Hughes,1987] and Zienkiewicz [Zienkiewicz and Taylor,
1991].
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Figure 13: Results for beam transverse displacement at nodes
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Figure 14: Results for beam slope at nodes

Figures 13 and 14 also provide the same displacement/rotation results as would be found
in the uniprocessor and shared-node problems.

Figures 15 and 16 show the beam’s internal force state, with the first figure plotting beam
bending moment and the second showing transverse beam shear.  The three points shown
overlaying the curves are the computed Lagrange multipliers for the three junctions
among the four processors. These results demonstrate that the Lagrange multipliers
calculated during the constraint implementation process have the physical interpretation
of internal forces within the beam that are required to maintain the constraints.
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Figure 15: Beam shear (Lagrange multiplier for displacement constraints)
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Figure 16: Beam moment (Lagrange multiplier for slope constraints)

3.3. Examples from Multiphysics Simulations and Other Special Cases

The previous examples demonstrate the use of the finite-element interface in considerable
detail, but in a setting that is simpler than what is normally found in practice.  The
following examples present less programming detail, but provide insights on more
complicated finite-element analyses, and especially on how multiphysics problems can
readily be handled using the abstractions present in the interface specification.

3.3.1. Field and Element Block Example

This simple two-dimensional example problem demonstrates how field information and
element block information interact in the setting of a standard multiphysics problem.  The
sample presented involves the specification for a block of two-dimensional elements to
solve thermoelasticity problems in the setting of an incompressibility constraint.  The
incompressible formulation results in mixed finite-element formulation, so that the
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displacement field must be accompanied by a pressure field that serves as a Lagrange
multiplier function whose purpose is to enforce the distributed incompressibility
constraint.  The mixed formulation requires certain consistency conditions to be satisfied
between the displacement and pressure fields (see the text by Hughes [Hughes,1987] for
details), and the resulting consistent mixed element used in this example is a nine-node
biquadratic Lagrange element, with a three-node internal linear pressure expansion.  The
thermal response of the element is decoupled from the mixed displacement/pressure
interpolation, so a simpler four-node bilinear Lagrange element is sufficient for modeling
the temperature field.

The resulting twelve-node element approximations are diagrammed in the Figure 17
below.  Note that the “nodes” for the pressure degrees of freedom can be located at any
location within the element sufficient to define a linear pressure field of the form

p(x,y)=a + bx + cy

This pressure field can also be idealized as a three-term elemental solution parameter list,
in which case the whole notion of “pressure nodes” can be dispensed with in favor of an
interpretation of the discontinuous pressure field as a purely elemental concept.

displacement  (u,v) and temperature T

displacement  (u,v)

pressure p

741

2

3 6 9

85

11

10

12

Figure 17: Example 2D multiphysics element

In this example, the field identifiers for displacement, temperature, and pressure are given
respectively by the fieldIDs 100, 101, and 102. With this convention, the initialization
call to initFields will utilize the following data:

numFields: 3

cardFields: [ ]112

fieldIDs: [ ]102101100

The data to be passed to the beginInitElemBlock function is given by the following:



FEI Annotated Reference Manual Version 1.0 Page 52

numNodesPerElement: 12

numElemFields: [ ]111212111212

elemFieldIDs:













































...102

...102

...102

101100

...100

101100

...100

...100

...100

101100

...100

101100

numElemDOF: 0

Note that some of the parameters passed to beginInitElemBlock (namely elemBlockID,
interleaveStrategy, numElemSets, and numElemTotal) are not germane to this example,
and hence they are not considered here.

Since the pressure field here is discontinous across element boundaries, the solution
parameters that define the pressure over a given element can be eliminated at the element
level to produce a simpler element block definition that requires finite-element
interpolation of only the displacement and temperature fields.  In this alternative
formulation, the pressure nodes would be identified as internal element unknowns, in
which case the three pressure nodes would be dropped from consideration within
elements from this block definition.  This approach would also remove the pressure field
from explicit description within the finite-element interface calls.  The resulting
parameters passed to these initialization routines would then take the following form.

numFields: 2

cardFields: [ ]12

fieldIDs: [ ]101100

numNodesPerElement: 9

numElemFields: [ ]212111212
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elemFieldIDs:



































101100

...100

101100

...100

...100

...100

101100

...100

101100

numElemDOF: 3

3.3.2. Rotated Boundary-Condition Example

The next example demonstrates the manner in which boundary conditions can be applied
in directions not aligned with the underlying coordinate system of the analysis.  The
example considered is that of a cantilever beam propped at its terminal end with an
inclined frictionless roller support.  The geometry of the sample problem is shown in
Figure 18 below, where the element numbered m is connected to a rotated roller support
at node 13.
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Figure 18: Example 2D boundary-condition handling

Because of the finite-element interface’s wide latitude in specifying field-oriented
solution data (and because rotations of solution fields clearly belong to the “physics” side
of the physics/algebra divide), the finite-element interface specification does not provide
for the direct implementation of the rotated boundary condition at node 13.  Instead, the
finite-element client code bears the responsibility for the following tasks:

• recognizing that the rotated boundary condition does not lie along the natural
coordinate directions of the problem,

• synthesizing a new rotated coordinate system for the boundary specification
(represented by the x’-y’ system in Figure 18 above),
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• passing the appropriate data for the boundary condition in the rotated coordinate
system via the loadBCSet method, and

• transforming appropriate data structures (in this case, the finite-element stiffness
matrix and load vectors) into the rotated coordinate system before calling the
loadElemSet method.

The last task is beyond the scope of this document, but its implementation details can be
found in standard finite-element references such as Zienkiewicz [Zienkiewicz and Taylor,
1991].  The general process involves transforming the underlying finite-element data
structures in a manner consistent with their tensorial nature.  In this example case, where
the solution field is vector-valued, this would require premultiplication of the element
load vector for element m by the matrix of direction cosines, and a left- and right-hand
matrix transformation by the direction cosines for the element stiffness matrix.  Since
none of the other elements in the mesh are associated with the rotated boundary
condition, these would constitute the only transformations required for the load step.

The data structures required for enforcement of the essential boundary conditions at the
left end of the beam have already been outlined earlier in this document, in the discussion
of the loadBCSet method.  Therefore, only the enforcement of the inclined roller
condition at node 13 will be presented below.

In order to satisfy the rotated essential (i.e., displacement) boundary condition at node 13,
the displacement must vanish in the x’ direction.  This rotated specification casts the
rotated essential boundary condition into the following data structures:

LenBCNodeSet:  1

BCNodeSet: [ ]13

alphaBCDataTable: [ ]01

betaBCDataTable: [ ]00

gammaBCDataTable: [ ]00

The roller support provides a natural (i.e., force) boundary condition in the y’ direction,
so that the force (i.e., the dual of the displacement, which in this mechanical case can be
identified as the associated quantity whose product with the displacement has the
physical interpretation of work) specified along this direction vanishes.  This condition
can be implemented using the various data structures shown below:

LenBCNodeSet:  1

BCNodeSet: [ ]13

alphaBCDataTable: [ ]00
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betaBCDataTable: [ ]10

gammaBCDataTable: [ ]00

A group of nodes containing a generic boundary condition of this type can be aggregated
into a nodeSet collection, in which case the BCNodeSet list will have multiple entries,
and the various tables that define the boundary condition will not have the degenerate
form shown in the example above (i.e., they will form tables instead of row vectors).

3.3.3. Shell-Continuum Junction Example

This three-dimensional example demonstrates a fairly complex set of algebraic
constraints that join two different mesh fragments with different views of the nodal
solution cardinality.  The geometry of this problem has been chosen to simplify the
presentation of the requisite constraint data, but the problem itself is representative of a
wide class of common structural analysis applications.  There are some mathematical
details that are not relevant to the particulars of this example problem, and these niceties
are thus relegated to footnote status.

The sample problem involves the junction of a shell with a three-dimensional continuum.
While the continuum elements are each associated with a single solution field (namely
the displacement field), the shell elements also interpolate a second solution field, the
pseudo-rotations11 in the three coordinate directions.  The process of embedding these
rotational solution parameters into appropriate continuum displacements constitutes the
focus of this sample problem.

The geometry of this sample problem is shown in Figure 19 below, where a collection of
four-node bilinear shell elements is to be joined to a mesh composed of eight-node
trilinear continuum elasticity elements.

                                                
11 Strictly speaking, the rotation field in a solid is not a vector, but instead is naturally represented by an
antisymmetric second-rank tensor.  For purposes of approximation, however, it is traditional practice to
store the components of this tensor as a list (or vector) of scalar rotations about the coordinate axes.  While
the rotation field is mathematically associated with a so-called axial vector which contains the three
independent parameters that define the rotation tensor, this axial vector involves rearrangements and sign
changes that are not of relevance to this example problem.  Furthermore, since the whole issue of a
standard solution sign convention for analysis of plates and shells is an open question in mechanics, this
example problem avoids all of these issues by merely representing the shell’s nodal rotation field as a
vector collection of three scalar components, denoted by r, s, and t.  For the reader interested in a more
careful exposition of this analysis detail, the text by Hughes [Hughes,1987] is particularly recommended.



FEI Annotated Reference Manual Version 1.0 Page 56

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

18

19

20

21

23

24

25

26

28

29

30

(Nodes 17, 22, and 27 are 

occluded by the shell component)

x

y

z

Figure 19: Example 3D constraint handling

Because the shells are analyzed using two solution fields (displacement and rotation
vectors), the process of coupling the shell approximation and the continuum model at the
common nodes (nodes 8, 13, 18, and 23) consists of two separate steps:

• coupling the displacement fields of the two domains (a process that occurs
automatically in this finite-element analysis, because each element approximation is
conformable with the other, so that the use of a common node numbering system at
the junction provides inter-element approximation compatibility across the
continuum-shell junction), and

• coupling the shell’s rotation field to the continuum’s displacement field (a process
that requires satisfaction of a set of discrete algebraic constraints at the common
nodes 8, 13, 18, and 23).

The two solution fields present in this example problem are diagrammed in Figure 20
below, where the individual element blocks are associated with their respective solution
fields registered via appropriate calls to beginInitElemBlock.
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Figure 20: Element-field associations

The discrete algebraic constraints are constructed by combining normal displacement
components in directions corresponding to the sense of the rotation components.  The
various solution components are tabulated below:

This rotation
component:

Depends upon these
displacement components:

r8 v3, w7, v8, w8, w9, and v13

s8 u3, u8, and u13

t8 u7, u8, and u9

r13 v8, w12, v13, w13, w14, and v18

s13 u8, u13, and u18

t13 u12, u13, and u14

r18 v13, w17, v18, w18, w19, and v23

s18 u13, u18, and u23

t18 u17, u18, and u19

r23 v18, w22, v23, w23, w24, and v28

s23 u18, u23, and u28

t23 u22, u23, and u24

If the three sets of scalar weights ξ, η, and ζ are introduced for purposes of representing
the r, s, and t shell rotation solution parameters in terms of the common displacement
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field components u, v, and w, then the twelve relations tabulated above can be cast into
three groups of generic algebraic constraints12.

x-component of rotation:








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y-component of rotation:
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z-component of rotation:
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









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



++=
++=
++=

++=

24232223

19181718

14131213

9878
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Note that in this example, the generic nature of the weights that multiply the various
displacement solution components arises from the fact that the mesh is sufficiently
regular so that the geometric properties (e.g., the dimensions of the continuum elements
in the yz plane) that underlie these constraint relations are the same for each constraint.  If
the mesh dimensions were not regular (e.g., if the mesh were graded in the y direction),
then these constraints would have to be ungrouped appropriately.  The generic nature of
these constraints has been chosen specifically to demonstrate here how individual
algebraic constraints can be grouped into constraint sets.

The data structures used in loadCRMult or loadCRPen for these three sets of constraints
are given below.  In each case, the field identifier for the displacement vector is taken as
5 and the field identifier for the rotation vector is taken as 10.

                                                
12 These constraints only apply to a small-deformation finite-element analysis.  A consistent linearization is
required to obtain kinematical relations that are appropriate for a large-deformation analysis.  The details of
linearizing these kinematic relations are beyond the scope of this illustrative example.
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x-component of rotation:

NumMultCRs:  4

LenCRNodeList:  5

CRNodeTable:



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











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282423221823
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CRFieldList: [ ]5555510
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CRValueList: [ ]0000

y-component of rotation:

NumMultCRs:  4

LenCRNodeList:  4

CRNodeTable:
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b

a

η
η
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CRValueList: [ ]0000

z-component of rotation:

NumMultCRs:  4
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LenCRNodeList:  4

CRNodeTable:
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CRValueList: [ ]0000
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4. Related Documents
This document provides an annotated version of the finite-element interface specification,
but it does not provide substantial material on the motivations or design principles behind
the finite-element interface, or other issues regarding its use.

In order to provide detail on these (and other) important topics, a few other associated
documents are available for use by developers of finite-element clients or solution
services modules. These auxiliary documents currently include:

4.1. Header Files

The C++ and ANSI C header files fei.h and cfei.h represent the ultimate realization of the
interface specification, as viewed by the C++ compiler, and as such constitutes the
authoritative documentation of the interface. It should be utilized to determine the type,
size, and calling sequence for all passed parameters, though its internal documentation is
sufficiently terse so that programmers will want to read the accompanying interface
specification.

4.2. Interface Specification Document

This document  [Clay, et.al., 1999] provides motivation for the design of the finite-
element interface layer, as well as fundamental theory required to understand the design
goals of the particular interface implementation.  By itself, it introduces the software
engineer to the “why” of the finite-element interface, as well as many of the details as to
“how” or “when”.  It does not provide a full suite of test problems, however, in large part
because the wide generality of finite-element analyses make the task of providing self-
contained documentation for all aspects of finite-element equation solution (including a
diverse range of sample problems) prohibitively difficult.

4.3. Example Problem Suite

The interface distribution includes a diverse range of sample problems that can be used to
demonstrate and test the interface implementation.  These drivers include the following
source files, all located in the fei-isis/fei-drivers/ subdirectory:

   distBeamDriver.cc uniprocessor and shared-node parallel code

   distCFEBeamDriver.c ANSI-C version of distBeamDriver.cc

   distExtBeamDriver.cc external-node parallel code with Lagrange constraints

   distExtPenDriver.cc external-node parallel code with penalty constraints
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7. Appendix A: Glossary of Finite-Element Abstractions
Active Node List: the set of all nodes associated with elements located on a given
processor. This enumeration is more precisely termed the processor active node list, in
order to distinguish it from its blocked subset.

Array: a generic term used in this document to refer to a derived and indexed data type
that includes lists, tables, vectors, matrices, or any other similar non-scalar data.

Assembly: the process by which compressed element matrices are accumulated into their
respective positions into the system matrices, including matrix assembly (for the element
stiffness matrices) and vector assembly (for the element load vectors).  This operation
combines an accumulation with a scatter operation for each element coefficient term.

Constraint: an algebraic relation that must be satisfied by the finite-element
approximation as a side condition.  Such constraints may be local (such as the linear
algebraic relation implied by an impenentrability condition between two parts of the
finite-element mesh), or they may be global (such as the overall divergence-free
constraint required in some incompressible solid or fluid mechanics problems).

ConstrSet: an aggregation of constraint relations into a generic form.

Element: a geometric subdomain that forms one individual component of the material
domain for the boundary-value-problem that is being modeled.  The rules for
constructing elements are bewilderingly diverse, but the basic idea is that the elements
tile the problem domain so that the intergrals that define the underlying energy functional
can be decomposed into a discrete sum of elemental contributions.

Element Block: a collection of elements lying on a single processor and satisfying two
specific criteria: (a) all elements in the block have the same number of associated nodes,
and (b) all associated nodes have the same pattern of solution unknowns.

Element Block Active Node List: the set of all nodes on a given processor associated with
a given block of elements -- this particular active node list plays an important role in
returning the computed solution to the finite-element program.

Element Matrix: the submatrices that result when the underlying energy functionals are
integrated over a given element.  In general, these matrices include a square element
stiffness matrix (with order given by the sum of all the solution cardinalities over each
node associated with the given element, plus the sum of any elemental solution
parameters that may be present), an element load vector (with the same number of rows
as the element stiffness), and in some problems (most notably, eigensolution
applications), an element mass matrix of the same size as the element stiffness.

ElemSet: an aggregation of elements into a conveniently-sized collection.

External Nodes: nodes which are either: (a) are involved in local calculations (e.g.,
appear in local constraint relations) but are not found in the active node list, or (b) are in
the local active node list and are involved in another processor’s calculations, but are not
in that processor’s active node list
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Field Solution Cardinality: the number of scalar solution components associated with a
given mathematical field constructed via finite-element approximation.  In a multiphysics
setting, several interacting fields may be present within the computational simulation.

Global Matrix: synonymous with System Matrix.

Lagrange Multiplier Constraint: a method for appending algebraic constraints to a set of
finite-element equations.  This approach adds one new equation for each constraint, and
generally produces an indefinite system of equations.

Load Vector: the right-hand-side vector obtained by assembling all the element load
vectors during the element assembly process.  In addition to element terms, the load
vector may contain other entries associated with boundary conditions or with discrete
constraint equations.  In general, the term “load vector” may apply to either the
assembled system-level right-hand-side or the individual elemental contributions, but the
latter vectors are generally prefaced with the modifier “element” to indicate their smaller
unassembled form.

Matrix: a rectangular two-dimensional array of numbers, where the length of each row is
a constant.  In short, the term matrix here is taken in its usual mathematical interpretation.
See table for more general two-dimensional data representations.

Mesh: the aggregation of nodes and elements that tile the solution domain, and that
collectively define the underlying finite-element interpolant used to approximation the
solution of the physical problem being modeled.  A finite-element mesh generally
includes (at a minimum) a set of nodes, a collection of elements that tiles the material
domain, and a set of connectivity data that associate each node with one or more elements
(this latter data structure is also termed the mesh topology, or the connectivity array).

Nodal Solution Cardinality: the total number of solution parameters defined at a node.
At a block boundary in a multiphysics simulation, different blocks may have different
views of the nodal solution cardinality, so care should be taken to determine the context
in which this term is used, including whether it applies to the entire analysis (where it
would represent the sum of all the field cardinalities over each field found at a node) or
restricted to a single block of elements (where that sum would be restricted only to the set
of fields approximated over elements of that block type).

Node: an interpolation point used to construct the finite-element interpolant utilized to
approximate the solution of a given boundary-value-problem of computational physics.

NodeSet: a collection of nodal data records for nodes where specific data must be
identified (as opposed to nodes that can be completely specified by the data in the mesh
topology array).  Examples include groups of nodes with identical boundary conditions,
sets of shared or external nodes, etc..

Penalty Constraint: a method for appending algebraic constraints to a set of finite-
element equations.  This approach adds no new equations to the set, and will preserve a
positive-definite character of the finite-element equations (assuming this characteristic
existed beforehand), but penalty constraints may cause the resulting system to become
poorly-conditioned, and thus difficult to solve.
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Solution Cardinality: either the nodal solution cardinality or the field solution cardinality,
depending upon the implicit context.

Stiffness Matrix: the square sparse coefficient matrix resulting from the collection of all
the discrete elemental contributions to the underlying energy functional.

System Matrix: a general term referring to a matrix that corresponds to the entire problem
domain (such as the system stiffness matrix), as opposed to any matrix or vector
associated with only part of the domain (such as an element stiffness matrix).

Table: an two-dimensional array of numbers that generalizes the notion of matrix to the
case where all rows are not required to be of the same length.  A table may be rectangular
(i.e., representable by a matrix) or it may have a “ragged” right edge because each row
has its own particular length.
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