[image: image1.png]Sandia
National
Laboratories

ASCI Software Integration Architecture Specification

Abstract:
A central aim of the REM program within ASCI is to provide an integrated computing environment that delivers the collective tools of ASCI to DP designers, analysts, and others within the NWC. The goal is to enable applications of a size and complexity that fulfill the ASCI vision. In order to achieve this we must overcome the software integration barriers throughout the system. We are proposing to develop and deploy a new software architecture which is designed specifically to enable and encourage interoperability between software products, both legacy, new and yet-to-be. This document is a specification
 for that architecture.

This architecture, named ASIA for ASCI Software Integration Architecture, is based on the use of software components, and represents a paradigm shift in our way of doing business. The architecture will be based largely on commercial products and open standards, with augmentation as needed to meet the particular needs of the DP programs and applications. For example, the security and high-performance (parallel) requirements of the ASCI program are not currently, nor are they expected to be, met by commercial developments. This architecture is designed to provide a unifying infrastructure for the integration of both loosely-coupled (i.e., traditional distributed object technologies) with a tightly-coupled (i.e., high-performance, parallel) add-on, supporting high-performance applications.

Ly Sauer, Robert L. Clay, Rob Armstrong, other REM FI architects to be added
Version 0.1

July 22, 1999

Table of Contents

11. Introduction

2. Scope
2
3. Requirements, Constraints, and Assumptions
3
3.1. Requirements
3
3.2. Constraints
6
3.3. Assumptions
6
4. Survey of Component Models
7
4.1. JavaBeans
7
4.2. Enterprise JavaBeans
7
4.3. CORBA Components
9
4.4. Microsoft DCOM and ActiveX
10
4.5. Common Component Architecture
10
5. Survey of Integration Techniques
10
5.1. Tool Integration
11
5.2. Java2 Enterprise Edition Connector
11
5.3. Common Integration Approaches
12
6. Architecture Overview
13
6.1. ASIA Objectives
13
6.2. ASIA Logical View
14
6.3. SIA Physical View
19
6.4. ASIA Process View
21
6.5. ASIA Roles
21
6.6. ASIA Scenarios
22
7. Future Directions & Research Opportunities
23
8. Glossary
24
9. References
26

List of Figures

12Figure 1. Adoption Integration

Figure 2. High Level View of the Software Integration Architecture
14
Figure 3. Component Adapter View of the Software Integration Framework
17
Figure 4. SIA Physical View
20

1. Introduction

Software development is still very much a handcraft activity that obeys laws that can not be generalized [Cox 1990a; Cox 1990b]. This leads to software products being delivered behind schedule, over budget, of substandard quality, and one-of-a-kind solutions. Commonly, the software products are not interoperable and thus can not be reused. Moreover, legacy software that may contain critical information or be core to the enterprise competitive edge can be difficult to use as the software infrastructure evolves. At Sandia National Laboratories, the complexities of these problems are increasing with the addition of software developed to execute on the massively parallel and high performance computers. The ASCI Software Integration Architecture (ASIA) described in this document is an infrastructure that addresses these problems associated with software interoperability.

The ASCI Software Integration Architecture is an infrastructure that exposes legacy data and systems for reuse and provides seamless integration with other (legacy and new) software regardless of the location, how it was developed, and its execution platform. With the same importance, the architecture also provides an environment for new software creation through composition of existing software or common services. This created software is then in turn reusable for the creation of other software. This specification provides an architectural description of the ASIA. The document starts with an outline of the specification objectives followed by the architectural requirements. The majority of the document describes the framework architecture specification.

If there is any overriding theme to the REM frameworks integration program it is software interoperability. Critical to software interoperability is a set of agreed-upon standards that all the participants adopt in order to make software components compatible. This task is concerned with adopting existing standards and, where necessary, augmenting these standards to meet the needs of future software development at Sandia and within the ASCI and REM programs. Many (probably most) of these requirements are covered by commercial software products already or soon to be available. Generally, software components fall into two categories: (1) functions whose requirements are satisfied by off-the-shelf frameworks, and (2) high-performance (HP) functions for which component interactions must be fast and tightly coupled. Viewed in terms the total amount of code, the first category is certainly the largest. This would include enterprise-like requirements that are satisfied by standard distributed object frameworks, such as CORBA, Enterprise JavaBeans, DCOM, etc. However, viewed as the total amount of computer cycles consumed, the second category is the most demanding. This would include HP computer simulations that are central to our strategic stewardship role, and the principle reason for ASCI’s existence.

2. Scope

The scope of this document is to provide an architecture specification of the ASIA. The architecture will define a set of artifacts that are used to specify the strategic decisions about the structure and behavior of the system, the collaborations among the system elements, and the physical system deployment. Since this specification follows the architecture-centric process of the Unified Process [Jacobson et al. 1998] to describe the architecture, the architecture will be used as one of the input products to incrementally develop the ASIA.

The overall goal here is to allow all software developers for Sandia to participate as creators of components that conform to a single architecture. Although the principle of component software is at least as attractive for high-performance, MPP-type applications, no off-the-shelf software is available in the high-performance arena. Thus provision must be made for HP components to supplement the more commonly used, commercial-based standards. In general, HP applications follow the 90/10 rule. That is, even for an application identified as HP, only 10% of the code has HP requirements, the rest is setup, tear down, and special cases. For this reason, HP requirements are viewed as an add-on or supplement to the more general requirements of commercially available distributed-object systems. Because the majority of the relevant software in existence now, or likely to be produced in the future will not require HP, the adoption of a single architecture based on existing off-the-shelf standards is the foundation upon which Sandia software will be written. Two concerns are paramount: a standard that is flexible enough not to lock us in to a particular vendor, philosophy, or parochial view, but at the same time, be unambiguous enough that two components can be developed separately and still have some certainty that they will be interoperable. To a great extent, the commercial field already provides means for components to interoperate. CORBA, Enterprise JavaBeans, and DCOM all provide ways of incorporating one another’s components. Part of the work of the REM Cross Cut Integration Project (which will be a first instantiation of this proposed architecture) is to identify specific interfaces that components can expect to have available for import and mechanisms that allow the components to export interfaces that provide services. No less important than this, though, is the need to be able to import existing code as components.

Presently, it seems clear that, for enterprise-like components, Java is the language of choice. Legacy codes will need C++, C, and FORTRAN bindings to the architecture resulting from this work. Moreover the specification for the architecture must be simple enough for legacy code developers and maintainers to be motivated to adopt it. HP developers will demand more computationally efficient languages than Java. The architecture created in this work must be either language independent or, at least, have bindings to the languages that matter.

Since the HP add-on to this architecture has no commercially available example, it will require a disproportionate amount of time resources to develop. High-performance computing requirements necessitate extensions to commercially available capabilities in order to support ASCI-scale computing and platforms. However, for the solutions to be effective, the HP components and frameworks must interoperate with the more loosely–coupled, commercially available component frameworks. We recognize that the extension of component architectures in high-performance computing is still a research area and the best strategy is to keep it as simple as possible while being true to its sole purpose: providing interoperability for high-performance computing software.

3. Requirements, Constraints, and Assumptions

3.1.
Requirements

In this section we discuss the core functional requirements of the ASIA. The requirements are delineated into two primary classes of application, namely, loosely-coupled and tightly-coupled. The distinguishing characteristics of each are defined below.

Loosely-coupled applications have the following distinguishing characteristics:

· Applications are developed for and on a single-processor programming environment (i.e., not traditional parallel, message-passing applications). This is typically called a “distributed object” programming model, where collections of serial objects run on collections of processors, where each process is serial and the locality of the objects is typically of minor importance.

· Applications have a relatively high tolerance for latency between objects (e.g., a 10th of a second will typically be considered sufficient).

· Applications built from loosely-coupled distributed objects may need to run in a classified security environment (e.g., security between objects and processors must be maintained at prescribed levels).

· Loosely-coupled application objects typically exchange data of size on the order of Gigabytes or less (i.e., bound by memory limitations of serial machines). Consequently, the bandwidth requirements are relatively modest as compared to that of parallel applications.

By contrast, tightly-coupled applications have the following distinguishing characteristics:

· Applications are developed for and on a parallel programming environment (i.e., the basic model accounts for a distributed-memory architecture, typically using either message passing, shared memory model, or both).

· Low latency is essential for good performance. Typically, (parallel) objects on separate processors need message-passing latencies on the order of 10 micro-seconds. Objects on the same processor should have latencies comparable to those of objects within the same address space.

· Applications on a parallel machine (e.g., ASCI Red MPP) will in general not need to enforce security restrictions between processors running the application (since the machine itself will be behind an appropriate security firewall).

· Applications have data sizes and corresponding bandwidth requirements on the order of total memory on the parallel machine (e.g., terabytes of data).

· Data and object locality are of critical importance for achieving good parallel performance (i.e., scalability).

There are of course many additional characteristics that can be associated with both types of applications. Below we list the specific requirements according to the above two categories, starting with ‘general’ requirements that apply to both classes.

3.1.1.
General Architectural Requirements

These requirements are common to both loosely-coupled and tightly-coupled applications, and are hence general requirements of the architecture.

· The architecture and related frameworks must be portable to a sufficiently large class of machines and operating systems so as to be considered effectively “platform independent”. We recognize that the entire set of services associated with the architecture and frameworks need not be ported to every machine (e.g., it is not necessary to port the entire set of loosely-coupled services to the ASCI Red machine).

· The architecture must support the existing ASCI security infrastructure (i.e. DCE, Kerberos, PRI naming, GSS API).

· The architecture must be extensible to support additional services, capabilities, and components that encapsulate legacy software and/or the enterprise business logic.

· The architecture must provide an interface that can be adapted for use with any standard repository. The architecture must provide a default repository or a mechanism for persistent data.

· The architecture must provide an interface for naming and directory services. The architecture must provide default naming and directory services.

· The architecture must provide a mechanism for leveraging legacy codes and frameworks.

· The various user roles of the architecture must be explicitly defined.

·

· The architecture must provide a mechanism for creating, storing, and reusing common components.

· Functionality of the architecture and associated frameworks must be able to grow in a distributed fashion. Components must be able to be added to the enterprise by people outside the group that designed and implemented the framework. Interaction with the framework administrator may be required, however (for installation and management).

· While all deployed instances of components may not be required to run with high security, components and objects in the architecture must be able to be run according to security restrictions as needed.
· Components and objects deployed within the architecture should be GUI-neutral. A clean separation between GUI and functionality will contribute to the usability of the component in other contexts.

3.1.2.
Loosely-Coupled Architectural Requirements

· The architecture must provide default security service and an interface to support frameworks adapting alternative security services.

· The architecture must provide a mechanism for efficiently managing, retrieving, and writing (between objects and to storage) large serial data (i.e., greater than a Gigabyte).

· The architecture must provide a mechanism for seamlessly flanging between serial and parallel applications. In particular, this is often referred to as the m-by-n problem, where in this case either m or n is 1. This is essential to construct an application (e.g., FEA problem set up) which spans serial to parallel objects and data sizes.

3.1.3.
Tightly-Coupled Architectural Requirements

· The architecture must support single program multiple data (SPMD) programming environments.
· The architecture must support bypassing any internal security restrictions between objects when running on a secured system (e.g., ASCI Red secure partition).
· The architecture must support message-passing between tightly-coupled, parallel objects, where the latency is not increased over that native on the machine.
· The architecture must support inter-object communications within a single processor with performance comparable to that of objects interacting within the same address space. That is, the architecture and any associated framework should not significantly reduce the performance over that which can be achieved between objects interacting in the same address space.
· The architecture must support the full bandwidth capability of the system with no significant loss in performance.
· The architecture must support the notion that “locality matters” for parallel applications. Specifically, mapping data and objects to processors in a precisely determined manner is crucial to obtaining good performance on parallel computers and must be supported.
3.1.4.
General Design and Development Guidelines

In addition to the above requirements, certain guidelines apply to the overall design and development of the architecture and associated frameworks. These include the following:

· The architecture and associated frameworks should utilize open standards where possible.

· The architecture and associated frameworks should be component based. This serves to produce a base of “common” components which promote software reuse and accelerate future application development.
· The architecture and associated frameworks should be designed and developed to accommodate the inevitable evolution of the underlying CS technologies.

· The architecture must be a solution that is applicable for the entire enterprise.

· Components deployed within the architecture must be able to be utilized by people outside the group that designed/implemented the framework. Third party developers should be able to use another party supplied component automatically and directly without any interference.

· Frameworks, objects, and components deployed within the architecture can be installed and administered by someone outside the group that developed it.

3.2.
Constraints

The primary constraints associated with the architecture are provided above in the requirements subsection. Specifically, it should be noted that we are not in a position to build everything from scratch. That is, we must leverage both commercial technologies and our legacy codes – neither the time nor resources exist to exclude these from our plans.

3.3.
Assumptions

The ASCI Software Integration Architecture will be developed based on the following assumptions:

· The architecture will be component-based.

· The architecture will provide the core support for development and deployment of component-based frameworks.

· The architecture will provide support for framework integration.

· The architecture has as a central aim the advancement of software interoperability and reuse, and specifically to provide a mechanism for integration and seamless interaction of heterogeneous legacy and new software.

· A single architecture will provide a unifying solution for both loosely-coupled and tightly-coupled programming models.

· While a single architecture will exist, multiple frameworks are expected, whereby these frameworks represent particular knowledge and problem domains.

· It will be necessary to adopt commercial products based on open interfaces and open source to meet our long-term objectives.

· The underlying commercial and scientific computing software technology will remain a moving target, and it is in our best interest to design around this notion of an evolutionary technology base.

· The architecture will require refinement and evolution over the course of the REM program.

4. Survey of Component Models

Choose one from column A, one from column B, and one from column C; presto, you have an application. Why should software development not be this easy? After all, this is how the personal computers are constructed, by selecting off-the-shelf components. It is this hope of building software programs from pre-fabricated components that lures the software community towards component software. The benefits of reusability and interoperability have driven both the research and commercial software communities to develop a component-based approach to software development. Today, there are many proliferations of solutions for supporting component-based software development, ranging from research-based (SCIPIO, Common Component Architecture, etc.) to industry-based (JavaBeans, Enterprise JavaBeans, DCOM, ActiveX, etc.) to consortium-based (OpenDoc, CORBA Components, etc.). The ones with the most promise and some industry momentum are Enterprise JavaBeans, JavaBeans, CORBA Components, and DCOM/ActiveX. This section provides a quick glance into these technologies and discusses their limitations and ability to meet ASIA requirements. The section begins with a discussion of JavaBeans (Section 4.1). The remaining sections (Sections 4.2, 4.3, 4.4, and 4.5) discuss Enterprise JavaBeans, CORBA Components, DCOM and ActiveX, and Common Component Architecture, respectively.

4.1.
JavaBeans

JavaBeans (bean) [Sun Microsystems 1997], created by the JavaSoft division of Sun Microsystems, is a reusable software component that can be manipulated visually using a builder tool. A component is a collection of objects representing the business logic and an information object that provides a standard view to the application builder. In addition, every component consists of properties, events, and methods. Properties contain data of the component, which can be accessed and modified via the component methods. The component events are the component’s external interfaces and are used as communication channels with its connected component(s). A bean executing in a builder tool can dynamically discover another bean’s capabilities and identity (events, properties and methods) using introspection. Beans that are deployed in a builder tool are consistently persistent through use of serialization. Changes made to the component in a builder tool are reflected in storage.

JavaBeans is a component model targeted at the development of graphical-based components such as buttons, drop down lists, and animated duke. Creation of components from scratch or through composition is dependent on the application builder tool in which the bean is designed. In addition to programming language (Java) restrictions, JavaBeans also lacks the lower-level service (i.e. security, transactions, etc.) support to address ASIA requirements.

4.2.
Enterprise JavaBeans

Enterprise JavaBeans (EJB) [Sun Microsystems 1998], also created by the JavaSoft division, is Java’s new component architecture for the development and deployment of reusable Java server components. These components are pre-developed pieces of application code that can be used to assemble applications. EJB is only similar to the JavaBeans (Section 4.1) in that it uses some similar concepts. EJB is governed by the Enterprise JavaBeans Specification, which defines multiple roles in the EJB environment, describes how EJB interoperates with clients and existing systems, indicates how EJB is compatible with CORBA, and defines the responsibilities for other components in the system.

One objective of the Enterprise JavaBeans architecture is to develop a component architecture that is easy for developers to create applications, releasing them for system-level details such as managing transactions, load balancing, threads, memory, and so on. Another goal is to develop a framework with clear contrasts among the various roles involved in developing and deploying component-based applications. The third aim is to define a standard component architecture for constructing distributed applications in Java Programming. Finally, EJB is designed to be interoperable with non-Java Applications and compatible with CORBA.

The EJB specification defines six distinct roles in developing and deploying applications. Each role may be performed by a different party, and multiple roles may be enacted by one party. The roles are Enterprise Bean Provider, Application Assembler, Deployer, EJB Server Provider, EJB Container Provider, and System Administrator. An Enterprise Bean Provider is typically the domain expert involved in developing reusable software components called enterprise beans (ebeans). An Application Assembler is an application domain expert responsible for composing applications using the ebeans. A Deployer is an expert in a specific operational environment and is responsible for deploying the ebeans. An EJB Server Provider is a specialist in lower-level services (i.e., transaction management, distributed objects, etc.) and publishes these services for EJB Container Providers to implement containers, which utilizes these services for bean deployment. Finally, a System Administrator monitors and manages the execution of the EJB Container and Server.

An Enterprise JavaBeans is a component (ebean) and executes in an EJB container that runs within the EJB server. A component is a Java class that implements the business logic. An EJB container hosts ebeans and makes the required services (i.e. transaction, security, persistence, etc.) available to ebeans through the interface defined in the specification, thus, freeing the component to concentrate on the business logic. An EJB server is the high-level process or application that manages EJB containers and provides access to system services. An EJB server can also provide vendor specific services (e.g., specialized security, optimized database access). An application client accesses enterprise beans executing in an EJB container through the enterprise bean’s home and remote interfaces. The home interface lists the available factory methods for locating, creating, and removing instances of the enterprise beans. The remote interface lists the business methods defined in the enterprise bean. Further, enterprise beans are classified into two different types: session bean and entity bean. Session bean models a connection or session with a single client and only persists for the life of the connection with the client. A session bean is further divided into two basic types: stateless and stateful. A stateless session bean is a collection of related services (methods) and does not contain any state between method invocation. A stateful session bean is an extension of the client application and is responsible for managing tasks and maintaining a state for the life of the enterprise bean. An entity bean represents persistent data that are maintained in a permanent data store such as a database, and can manage its own persistence or can delegate it to the container.

Enterprise JavaBeans is one of the first major component architectures with industry support. In the one year since its announcement, there have been numerous vendors supporting the various aspects of the specification, ranging from tools to support development of enterprise beans (VisualCafe, VisualAge) to EJB servers (Iona, Inprise, Weblogics). One of the major advantages is the specification of well-defined interfaces for definition of components and deployment environment. This results in an architecture that supports component creation through composition, ease of use for component developers, and reusability. However, these benefits do not sufficiently satisfy all of ASIA’s requirements. One of the most critical requirements is that a component must be an independent unit of software that can seamlessly interoperate with other components regardless of the developing language, operating system, and developing methodology. Additionally, Enterprise JavaBeans must be developed in Java. Sun is working on developing an approach for mapping components defined in Java to IDL. This would allow programming language independence for Enterprise JavaBeans. However, this approach is adding an extra layer to the component model, which may not be desirable for high performance components. Another disadvantage of Enterprise JavaBeans is the stringent synchronization requirements. Applications assembled from enterprise beans and executed in EJB containers are restricted to one process and single thread. ASIA must support applications that require multiple processes and threads.

4.3.
CORBA Components

Although OMA and CORBA are powerful standards for developing sophisticated, distributed applications, they still require expert programmers to develop applications. To address this problem, OMG is working on extending the OMA platform to include an infrastructure for programmers to assemble software from off-the-shelf software components into sophisticated, distributed applications. This infrastructure is known as CORBA Components (CORC) [CORBA Component 1999]. Changes to the OMA, as well as additional features are required to support a component-based development model. As of the March 1999 revised submission to the CORBA Components RFP, CORC required an extension to the IDL grammar to support new meta-types and grammar. It also called for the additions of a component model, a component implementation framework, a container programming model, packaging and deployment, a component meta-model, and a mapping to Enterprise JavaBeans.

A CORBA component development begins with specifying the business logic and any external interfaces using the extended IDL (called CIDL). The business logic implementation uses the component implementation framework as the programming environment. Once the code is completed, the CIDL compiler generates the appropriate supporting infrastructure, which are used as inputs to create the package for distribution. Similar to Enterprise JavaBeans, CORBA components are executed in a container, which uses CORBA services to support the components.

As specified, CORBA components is a component model that supports component composition, is programming language and operating system independent, and interoperates with Enterprise JavaBeans. A disadvantage is that CORC requires IIOP as the single standard for a data transfer prototype. From the specification perspective, CORC addresses our requirements for developing and deploying components; however, it does not address component-based high performance computing. Since the specification is still in a work-in-progress state and the timeline for realization is still not clear, the architecture is still uncertain. We can however, adopt pieces of the CORC architecture that address ASIA issues and develop the ASIA specification to interoperate with CORC. The element being adopted is the specification for surface features.

4.4.
Microsoft DCOM and ActiveX

Distributed Component Object Model (DCOM) [Horstmann and Kirtland 1997] is Microsoft’s integration infrastructure solution for implementing components that reside on different hosts. ActiveX defines a set of services for supporting component documents.

DCOM and ActiveX only support component development on Windows NT 4.0 or later. In addition, it does not support programming language interoperability. ActiveX is not a component architecture for general-purpose use, but was designed for the sharing of document components. Thus, ActiveX using DCOM does not address ASIA requirements.

4.5.
Common Component Architecture

Common Component Architecture (CCA) [Armstrong et al. 1999] is a developing component architecture specification that supports high performance computing, which targets network of workstations, distributed memory multiprocessors, clusters of symmetric multiprocessors, and remote resources. The specification is being developed by a group of representatives from DOE laboratories and academia with the aim of defining a foundation for definition of standardized sets of domain-specific component interfaces and for the interoperability among toolkits developed by different teams across different institutions.

Currently, the CCA working group has defined an overall architecture for high performance components. In particular, the specification specializes the interface definition languages (IDL) to include grammar for specifying attributes specific to scientific computing software programs (e.g., matrix). CCA components use ports to support surface interfaces that allow fast and collective interconnects among components. These components are deployable into any CCA compliant framework.

Currently, the CCA working group is prototyping the architecture and learning from the prototypes to improve the architecture. The CCA is providing a mechanism for reusing high performance computing software. However, the CCA does not address component-based software development in an environment where applications execute (for the most part) on a single processor, as well as where the location of the components that makeup the application can be anywhere (location transparent). Since CCA provides a solution for high performance computing, ASIA will adopt the CCA standards as a baseline for addressing the tightly-coupled architectural requirements.

5. Survey of Integration Techniques

Monolithic software still has a major presence in the software community. Some of these applications are critical to the enterprise because they either contain vital information for the organization or they maintain the main thrust of the business operations. As new software is introduced into the enterprise, some of the new software will need to interact with the existing data and/or systems to meet the business requirements. How different software products interact to provide a coherent application is the topic of integration. ECMA [ECMA/NIST 1991] defines integration as:

· The degree to which different tools may effectively communicate among one another within the given environment framework.

· A measure of the relationship among components of an environment.

· The ease, interoperability, portability, scalability, productivity and other “ilities” produced by the seamless interaction among a set of environment components.

With an exception of computer aided software engineering (CASE) tool integration [Wallnau and Feiler 1991], there has not been any major efforts to define an integration framework for heterogeneous software interoperability until recently with the introduction of Connectors by JavaSoft. However, there are some commonalties that exist between these individual efforts. This section provides a brief introduction into CASE tool integration, Java2 Enterprise Edition Connector, and the common integration approaches discovered within existing integration efforts (Sections 5.1, 5.2, and 5.3) as well as discusses how these techniques can be used to meet ASIA’s requirements.

5.1.
Tool Integration

Integration of tools is about understanding the extent to which tools agree. This agreement may involve data formats (data), user interface conversations (presentation), use of common functions (control), and the role in the software process (process). The data integration perspective is to ensure that all the information in the environment is managed consistently regardless of how the parts are operated on. Presentation integration looks at improving the efficiency and effectiveness of the user’s interaction with the environment by reducing the user’s cognitive load. Control integration addresses the functions’ interoperability. Functions of the integrating tools are mapped to provide seamless invocation from one function of a tool to another function of a different tool. Finally, the process integration ensures that tools interact effectively in support of a defined process. These five aspects of tool integration are essential to the success and complete integration of any tools.

One ASIA requirement is to provide a mechanism for existing data and systems to seamlessly interoperate. Control and data integration aspects of CASE tool integration can be used to aid in developing the ASCI Software Integration Architecture.

5.2.
Java2 Enterprise Edition Connector

At JavaOne 99, JavaSoft announced Java2 Enterprise Edition (J2EE). Part of the J2EE platform is Java2 Enterprise Edition Connector (J2EE Connector), which is an architecture for connecting J2EE to heterogeneous enterprise information systems (i.e., ERP, mainframe transaction processing, and database systems). The architecture provides a mechanism for enterprise information system vendors to support a standard connector for the enterprise information system. A connector can be added to an application server and provide connectivity between the enterprise information systems and the application server.

From the early announcement of J2EE Connector, it can support the ASIA requirement of providing a mechanism for seamless integration of existing software. Since the architecture is still under development, Connector is not currently a viable solution for ASIA. Even if it is a mature architecture with industry backing, the architecture is still limited to the Java programming environment. This limitation means that Connector is not a viable solution for the ASIA due to the requirement for programming language independence.

5.3.
Common Integration Approaches

[image: image2.wmf]Application

s

Application

Servers

Data

Data

Data

Data

Servers

 Web Servers

User

Interface

Business

Logic

Adoption

Integration

Enterprise Legacy

Data, & Systems

Frameworks

I

B

M

Legacy

Systems

 Browser

Graphical User

Interface

SIA

High

Performance

Computing

Applications

There are two approaches to handling legacy data and systems integration: re-engineering integration and adoption integration. Re-engineering integration is the process of re-structuring and re-developing the legacy data or systems using the technologies (e.g., Java or CORBA) and/or models (object-oriented or components) of the integrating environment. The other technique use various wrapping mechanisms to expose the legacy data or system services to another application without effecting the legacy data or systems as depicted in Figure 1. Both approaches have their advantages depending on the legacy data or systems. The first technique is ideal for small applications and where the staff are very knowledgeable of the legacy systems and are experts with the technologies of the integrating environment. However, there are cases where the legacy systems are large and the staff does not have an in-depth knowledge of the systems to re-engineer into the integrating environment. This is an environment in which the adoption integration technique is suitable.

Figure 1. Adoption Integration

Both of these approaches are used in the ASCI Software Integration Architecture.

6. Architecture Overview

The software community’s lack of agreement on a standard definition or concept for a software component means that each application defines components differently based upon the environment and application domain [Abernety 1999; CORBA Component 1999; Nierstrasz and Meijler 1995; Szyperski 1998; Sun Microsystems 1998]. However, there are commonalties among these definitions. These essential characteristics define a software component as a self-contained unit of independent software that is deployable and seamlessly interoperable with other components. This implies that a component is a functional encapsulation of a set of responsibilities with clear division from other responsibilities, and is programming language, operating system, and executing environment independent. Additionally, a component consists of a collection of standard interfaces that acts as a conduit to the external environment. This permits component compositions to create new components, as well as, act as the component communication channels with the outside world. The component determines its capabilities based on the information detected via its interfaces. These characteristics make software components ideal for addressing legacy data and systems integration and creation of a software development environment based on reusing existing software. ASIA takes advantage of software components to support its objectives.

This section describes, at a high level, the ASCI Software Integration Architecture, which provides the blueprint for integrating legacy data and systems and provides the mechanism for reusing common software. The architecture describes its structure, internal interactions, and the deployment environment aspects using the architecture-centric process. The architecture description begins with a summary of the architectures major objectives as indicated in the ASCI Software Integration Architecture Use-Case [Sandia National Laboratories 1999] (Section 6.1), and a description of the major elements of the ASCI Software Integration Architecture (Section 6.2). Sections 6.3 - 6.6 provide descriptions of the ASIA physical structure, process view, user roles, and scenarios, respectively.

6.1.
ASIA Objectives

The ASCI Software Integration Architecture addresses the following major objectives:

1. The infrastructure must provide a mechanism for exposing the legacy data and systems so that they are usable by any application regardless of their location, platform, language, and development environment. Legacy data and systems include existing data, systems, frameworks, tools, and high performance computing applications.

2. The infrastructure must support component-based development. Specifically, it must include a model for describing software components. The model should include provisions for creation of software components through composition of components. Once created, the infrastructure must provide a mechanism for deploying the software components.

3. The infrastructure must provide for requirements supporting tightly-coupled, high performance operations, as well as the more traditional loosely-coupled operations in the same component.

6.2.
ASIA Logical View

The ASCI Software Integration Architecture consists of multiple main elements as depicted in the Figure 3. They are the:

· Enterprise Component Model – Formal abstraction of enterprise components. An enterprise component is an independent unit of software that encapsulates a set of clearly separated responsibilities. In addition, an enterprise component must be deployable, composable, and seamlessly interoperable with other enterprise components

· Component Constructor – Creates enterprise components from existing enterprise components and legacy data and systems.

· Component Adapters – Adapts legacy data and systems to the Component Constructor resulting in exposing legacy data and systems for construction of enterprise components.

· Component Locator – Finds locally and distributed enterprise components for the Component Constructor to allow creation of enterprise components through composition of enterprise components.

· Component Generator – Produces enterprise components that are stored in the Component Repository and any technology specific (i.e., Enterprise JavaBeans, CORBA Components, COM, etc.) components as requested by the users.

· Interface Repository – Stores the interfaces and component adapter package information, which are used by the Component Constructor to expose legacy data and systems to users to create enterprise components.

· Component Repository – Stores the enterprise components created by the Component Constructor.

[image: image4.wmf]Applications

Application Servers

Data

Data

Data

Data Servers

 Web Servers

User

Interface

Business

Logic

Adoption

Integration

Enterprise Legacy

Data, & Systems

Frameworks

I

B

M

Legacy Systems

 Browser

Graphical User Interface

SIA

High Performance

Computing Applications

Figure 3. High Level View of the ASIA

Elements of the ASCI Software Integration Architecture (Figure 3) are fully described in Section 6.2.1. The dependencies and interfaces are provided in Sections 6.2.2 and 6.2.3, respectively.

6.2.1.
Subsystems

6.2.1.1.
Enterprise Component Model

The ASCI Software Integration Architecture supports creation of enterprise components from enterprise components or legacy data and systems. The Enterprise Component Model describes the formal abstract description of the enterprise component. The model consists of 1) the enterprise component identity, 2) the enterprise component standard external interfaces, 3) the enterprise component factory, and 4) the enterprise component definitions.

The enterprise component is primarily identified by the component reference with a combination of the component ports. Among other information, the component reference also contains the information to indicate the component location. If the enterprise component is exported by the Component Constructor into a technology specific format (i.e., EJB, CORC), then the combination of the component reference and ports must contain enough information to revert the component (in technology basic format) back to enterprise components.

The enterprise component supports various surface interfaces, which are used by clients, elements of external applications, and other enterprise components to interact with an enterprise component. This is known as ports. The Enterprise Component Model supports four basics ports:

· Facet – Uniquely named interface that exposes business logic to the external environment and allows clients or applications to interact with the component.

· Connector – Uniquely named interface that provides interactions between components. The Connector ports can also be specialized into DirectConnector ports, which are fast interacting ports used to connect tightly-coupled components such as high performance computing components.

· Events – Uniquely named port that emits particular events to, or receives specific events from a connected port.

· Inspector – Used by the component to dynamically read the external environment and determine its capabilities based on this information.

Each specific enterprise component has an associated factory, which supports the creation, management, and deletion of the component instances of the particular type. The factory interface manages the component’s life cycle, memory, and serialization.

The heart of the enterprise component model is the enterprise component definition. The definition specifies the syntax and semantics for defining enterprise components and their ports. There are two approaches to defining the enterprise component definition. The first option is to develop a set of grammar sufficient to describe the enterprise component. Another option is to adopt an existing component definition. Additionally, the component definition is represented using abstraction to achieve programming language independence. Some possible options are XML or IDL. The architectural decisions for the enterprise component definition and its representations are left as an activity for the next version of the architecture.

6.2.1.2.
Component Constructor

The Component Constructor is core to the architecture and provides the infrastructure for construction and creation of enterprise components from legacy data and systems or existing components. After suitable pre-configuration of the legacy code and data, the Constructor provides the users the capability to automatically browse legacy data, legacy services, and existing components to create new components dynamically. The Component Constructor depends on the Component Adapters (Section 6.2.1.5) to access legacy data and systems and the Component Locator (Section 6.2.1.4) to retrieve existing components. The Component Constructor uses the Enterprise Component Model (Section 6.2.1.1) to create enterprise components, where its contents may consist of data and services from legacy systems or existing components. The newly created components are stored in the Component Repository (Section 6.2.1.6) for tracking and federation. The Component Constructor uses the Component Generator (Section 6.2.1.3) to export enterprise components stored in the Component Repository into various component forms (i.e., Enterprise JavaBeans, CORBA Components, COM, etc.). The default format is the one defined to represent the enterprise component (Section 6.2.1.1). Once enterprise components are exported, they can be deployed in the supporting server. For example, Enterprise JavaBeans components are deployable into EJB Container and supported by the EJB Server.

The Component Constructor is a decentralized federation of Component Constructors, which implies that each Component Constructor manages its own set of federated Component Constructors. To be part of a federation, the Component Constructor must be able to import from at least one other Component Constructor in the federation. The Component Constructor that exports into a remote Component Constructor has an export contract with the remote Component Construct. The remote contract is an agreement between an importing Component Constructor and an exporting Component Constructor. It states the allowed extent of access of a remote Component Constructor repository contents to the local Component Constructor, the rules for mapping requests and results between the local Component Constructor and the remote Component Constructor, whether it can be chained with other Component Constructors, and the Component Constructor information for network connection. The chaining indication allows a local Component Constructor to indirectly communicate and access remote Component Constructors that are not its immediate importing Component Constructor.

6.2.1.3.
Component Generator

The Component Constructor uses the Component Generator to export enterprise components stored in the Component Repository (Section 6.2.1.6) into a component form described by the Enterprise Component Model (Section 6.2.1.1) or other component forms supported by the various existing component technologies (i.e., Enterprise JavaBeans, CORBA Components, COM, etc.). The Component Generator is a framework that is extendable to support component models as they are introduced into the market.

The Component Generator uses semantic ontology to map enterprise component models to a particular component model. For example, the enterprise component definition can be semantically transformed into CORBA components.

During the component generation phase and if the exporting components contain legacy data and systems, the Component Generator automatically produces the appropriate bindings to the legacy data and systems using the data provided by the Component Adapter (Section 6.2.1.5). Similarly, if the generated component consists of other components, the Component Generator generates the necessary binding to the sub-components regardless of its location. In addition, each extracted component has built-in authenticating and authorizing information to control access to the component.

6.2.1.4.
Component Locator

The Component Constructor uses the Component Locator to retrieve components from the local Component Repository and any federated Component Constructors within the search path.

6.2.1.5.
Component Adapters

The ASCI Software Integration Architecture supports both integration approaches (re-engineering integration and adoption integration) described in Section 5.3. The architecture supports the re-engineering integration technique by specifying a component model (Section 6.2.1.1) for re-construction of applications into components. Additionally, the architecture provides various options for deploying the components, ranging from technology specific solutions (i.e., Enterprise JavaBeans and CORBA Components) to ASCI Software Integration Architecture specific deployment framework such as an ASIA Server (Section 6.2.1.8) and a CCA compliant framework [Armstrong et al. 1999].

[image: image5.wmf]SIA Server

CCA Services

CORBA Container

Component

Adapters

Enterprise Legacy

Data,

Systems,

 Frameworks, &

High Performance

Computing Applications

EJB Server

Windows NT

Component

Locator

EJB

CORC

Software Integration Architecture

HPCC

Interface

Repository

Component

Repository

Component

Adapters

Component

Adapters

COM

EC

Component

Generator

Component

Generator

Component

Generator

Component Constructor

Federated

Component Constructuor

The architecture supports the adoption integration technique with the Component Adapters. A Component Adapter is a reification of the object adapter [Gamma et al. 1995] that provides the logic for mapping legacy data and systems into a representative that is understandable by the Component Constructor. This is depicted in Figure 5, which is a layer diagram that depicts the relationships between the Component Adapters and other ASIA subsystems. The top layer is the integrating data or systems, which may reside on the same machine as the Software Integration Architecture or be distributed. The integrating data or systems interact with the Component Adapters to expose their data or services to the Component Builder in the form of services. The Component Constructor exposes the services to users for creation of components.

Figure 5. Component Adapter View of the ASIA

Specifically, the Component Adapter is a package consisting of multiple items as shown in the callout of Figure 5. The first and a required item is an IDL that describes services, which either retrieved legacy data or maps to one or multiple combination of legacy systems services. Another item is the necessary logic to export the mapping of the IDL to the legacy data and systems. Lastly and an optional item is the logic to support distribution (i.e., stub and/or tie files) if the legacy data or systems are located remotely. The package is described using XML. The ASCI Software Integration Architecture supports both static and dynamic deployment of the Component Adapter. The static deployment allows the component adapters to be loaded into the Interface Repository during Component Constructor activation process. Static deployment requires that the location of the component adapter be specified to the Component Constructor. One possible option is to use the operating system environment variable (i.e., COMPONENT_ADAPTER_PATH). Dynamic deployment permits the introduction of new services to the Component Constructor at any time.

An example of integrating legacy data into the ASIA is in the area of employee databases. Some enterprise employee systems are still running on mainframe systems and some of those applications were written in languages such as Ada, FORTRAN, etc. The employee information is critical information for any organization and can also be used to service other enterprise applications (e.g., payroll). To expose the employee data to newly created applications requires some kind of integrating approach. To expose the employee data to other applications using the ASIA requires a component adapter. The component adapter contains IDL, the object adapter that contains the mapping logic, and the distribution logic. The IDL lists methods (i.e. getEmployee, displayEmployee, etc.) that sufficiently represent the employee information stored in the legacy system. The object adapter processes the conversion between the IDL methods and the legacy data. The distribution logic is the source needed to support connection to the legacy data. The IDL, object adapter, and distribution logic are bundled together into a component adapter package. The component adapter describes the IDL, object adapter, and distribution logic using XML. This component adapter is registered with the Component Constructor.

Special consideration must be given to legacy programs, particularly those of the high-performance variety, that are not thread safe, probably are not thread safe, and, in some notable cases, are outright thread hostile. Mappings must be aware of thread policies in particular commercial technology solution architectures, and provide for the necessary insulation.
6.2.1.6.
Component Repository

The Component Constructor uses the Component Repository to store enterprise components for tracking and Component Constructor federation activities.

6.2.1.7.
Interface Repository

The Interface Repository tracks the component adapters that are adapted by the Component Constructor. In particular, it records the adoption interface and its associated package information. The tracked interfaces are used by the Component Constructor to provide the users with exposure to legacy data and systems.

6.2.1.8.
ASIA Containers & Servers

The enterprise components that are not exported into technology specific forms may use any ASIA-compliant containers/servers to deploy the component. This section will describe the specification for the ASIA deployment environment. This is left as an exercise for the next revision of the architecture.

6.2.2.
Dependencies

The ASCI Software Integration Architecture leverages off the current server component technologies (i.e., Enterprise JavaBeans Server/Container, CORBA, etc.) to deploy and execute components. A rationale for this approach is to take advantage of the current technologies and to not duplicate already existing capabilities. However, if the current technology does not meet the particular business requirements (e.g., Sandia’s specific security specification), any ASIA-compliant container/server or CCA-compliant framework can be developed and used to deploy the enterprise components. The specification of ASIA container/server is described in Section 6.2.1.8, and the CCA architecture is described elsewhere [Armstrong et al. 1999].

6.2.3.
Interfaces

In addition to the external interfaces supported by the enterprise components (Section 6.2.1.1), the ASIC Software Integration Architecture also provides the following interfaces for accomplishing the objective.

6.2.3.1.
Component Adapter Interface

The Component Adapter specifies how legacy data and systems are exposed to the Component Constructor. The Component Constructor displays the exposed data and services to its users for browsing and creation of new components. The interface supports location transparency of the legacy data and systems.

6.2.3.2.
Component Generator Interface

The Component Generator Interface specifies how external component models are recognized by the Component Constructor for generating components.

6.3.
ASIA Physical View

The ASCI Software Integration Architecture Physical Structure describes how the various elements identified in the logical view map onto the various processing nodes (network of computers). Figure 7 shows various possible deployment configurations of the Software Integration Architecture and its dependencies.

In Figure 7, the Integration Envir box represents the Component Constructor and its supporting subsystems (Component Adapter, Component Generator, Component Repository, Interface Repository, and Component Locator), where the Integration Envir Client box is the Component Constructor (programmable or user) interface. The legacy data and system are depicted as the Legacy Data & Syst box. The Component Deployment Envir box represents the environment in which the components generated by the Component Constructor are deployed and executed.

As diagrammed in Figure 7, there are three possible configurations of the ASCI Software Integration Architecture. The Autonomous Software Integration Architecture physical configuration is the one where all elements of the architecture reside on the same physical node. The Component Constructor accesses legacy data and systems and exports components to the component deployment environment, all of which are located on the same node. The client that drives the Component Constructor also executes on the same node. The advantages of this configuration are that it is relatively easy to implement and maintain communication among the various processes does not require distribution and is done using inter-process communication techniques. Another advantage is that it provides reuse of components and integration of legacy data and systems. One major disadvantage is that it is not realistic for a production system. However, this approach is ideal for prototyping or demonstrating the concept.

[image: image6.wmf]Physical Node A

Physical Node B

Software Integration Architecture

I

B

M

ComponentAdapter1

ComponentAdapter2

Existing Application

Component Builder

Interface

Repository

IDL

Adapter

Logic

Distributed Logic

IDL

Adapter

Logic

Figure 7. ASIA Physical View

The Distributed Software Integration Constructor is a physical configuration where the various components of the framework may reside on the same or different node than the Component Constructor and its support subsystems. However, the Component Constructor is not part of a federated Component Constructor. An advantage of this approach is that it provides integration of distribution legacy data and systems, as well as reuse of distributed components, which more closely models a real world situation. Another advantage is that the search for a list of existing components is faster since the search never leaves the node that the Component Constructor resides to locate a match. One of the disadvantages is that each Component Constructor is isolated, which implies that it only provides reuse of a limited group of components.

The Federated Software Integration Constructor is a deployment configuration where all of the processes are distributed across the network (located on different physical nodes) and the Component Constructor is part of a federated Component Constructor. Therefore, this configuration is the same as the Distributed Software Integration Constructor configuration, except for the Component Constructor federation. During Computer Constructor activation, it exports itself to a Component Constructor in the federation and explicitly imports the Component Constructor that contains components of potential interest. The imported Component Constructor will be used to locate a potential match to the requests. The federation gives the Component Builder user access to a wider set of reused components, which implies a higher possibility of reuse. It also models the real world situation by providing the full reuse of distributed components. A disadvantage of this configuration is that it is a complex system and is more difficult to realize. Also, searches for a match may potentially take longer to satisfy, since the request potentially requires the searching of other (distributed) Component Constructor repositories.

6.4.
ASIA Process View

The ASCI Software Integration Architecture process structure describes the non-functional requirements of the infrastructure at its highest level of abstraction. It addresses the concurrency, distribution, and thread of control that executes each function of the infrastructure. This is left as an exercise for the next revision of the architecture.
6.5.
ASIA Roles

The ASCI Software Integration Architecture specifies four distinct roles in utilizing legacy data and services, as well as creating reusable software. Each role may be performed by a different party. The architecture specifies the contracts that ensure compatibility between producer and consumer roles. In some cases, one party may perform several roles. For instance, the adapter provider also creates and exports the components (component provider).

6.5.1.
Adapter Provider

The Adapter Provider uses the Component Adapters to develop the component adapter package for each legacy data and systems. Once the component adapter package is deployed into the Component Constructor environment, the Component Constructor uses the package as a bridge to the legacy data and systems and makes them available for the users to browse and create components. The domain expert would likely do this.
6.5.2.
Enterprise Component Provider

The Enterprise Component Provider is typically the domain expert. An Enterprise Component Provider uses the Component Constructor to configure and create an enterprise component. Once created, the Enterprise Component Provider can select to export the component to various representations currently existing in industry.

6.5.3.
Application Developer

The person who links various components together to form an application. This person is likely to be a component provider and adapter provider as well. The person must be a domain expert but may not be expert in all the components he/she uses.

6.5.4.
Application User

This is a domain expert that need not be familiar with components or component architectures. Need not know what components or component frameworks he/she is using. This is the expert that is familiar with the field, but not necessarily computers.

6.5.5.
Component Technology Provider

The Component Technology Provider is an expert in specific component model technology (i.e. Enterprise JavaBeans, CORBA Components, etc.). A Component Technology Provider is responsible for creating Component Generator specific to a particular technology. The provider uses the Component Generator Interface to create the generator.

6.5.6.
System Administrator

The role of a System Administrator is to manage the well being of a running system. The system administrator uses monitoring and management tools provided by the ASCI Software Integration Architecture.
6.6.
ASIA Scenarios

The ASIA scenarios capture the system’s critical functionality, which are functions that are the most important, frequently used, or present significant technical risk. Identification of the ASIA Scenario is left as an exercise for the next revision of the architecture.

7. Future Directions & Research Opportunities

This document provides an overview of the ASCI Software Integration Architecture’s overall structure. Detailed specifications of the various ASIA elements listed below are not addressed.

· What is the enterprise component definition? Should we adapt one of the existing definitions or develop our own definition? What representation should be used to define the enterprise component? Possible options include XML or IDL.

· What is the deployment architecture for the enterprise components? In particular, what is the architecture specification of the ASIA Servers?

· How does system administration fit into the ASCI Software Integration Architecture? What are the capabilities of the administration subsystems?

· What are the system’s non-functional requirements?

· What are the system’s scenarios?

8. Glossary

ASIA
ASCI Software Integration Architecture

Components
A unit of independent software that encapsulates a clear set of responsibilities and are deployable. Components must be composable with other components regardless of the programming languages, systems, or location. In addition, a component must be able to dynamically determine its surface features and communicate that information to its connecting clients or components. See Section 6.2.1.1 for a more concise definition of a component in ASIC Software Integration Architecture.

Component-based Development
The building of software systems out of prepackaged generic elements.

CORC
CORBA Components is Object Management Group’s component architecture, which extends the OMA to support components. See Section 4.3 for more details.

EC
Enterprise Component is a ASIC Software Integration Architecture component. See Section 6.2.1.1 for a more in-depth description.

EJB
Enterprise JavaBeans is a component architecture for the development and deployment of object-oriented distributed enterprise-level applications. Applications written using the Enterprise JavaBeans architecture are scalable, transactional, and multi-user secure. These applications may be written once and deployed on any server platform that supports the Enterprise JavaBeans specification. [Sun Microsystems 1998]

Enterprise
A large organization with potentially several hundred employees that could be spread across many geographically distributed sites [Khoshafian and Buckiewicz 1995].

Frameworks
A semi-finished program that not only packages some reusable functionality, but also defines generic software architecture in terms of a set of collaborating, extendible object classes. Booch [Booch et al. 1999] defines a framework as an architectural pattern that provides an extendible template for application within a domain.

J2EE
Java2 Enterprise Edition is the next release of Java2 Standard Edition and defines an extended Java configuration for supporting enterprise computing. In addition to the Java2 Standard Edition features (i.e. portability, JDBC API for database access, security), J2EE adds full support for Enterprise JavaBeans, Java Servlets API, JavaServer Pages, and Connector. The platform includes its specification, a compability test suite for verification that its implementation is complying with J2EE platform, a reference implementation that provides an operational definition of the J2EE platform, and an application model that provides guidance to help developers build enterprise applications that can run in a J2EE platform.

Loosely-Coupled Applictions
Loosely-coupled applications have the following distinguishing characteristics:

· developed for and on a single-processor programming environment (i.e., not traditional parallel, message-passing applications). This is typically called a “distributed object” programming model, where collections of serial objects run on collections of processors, where each process is serial and the locality of the objects is of minor importance.

· relatively high tolerance for latency between objects (e.g., a 10th of a second will typically be considered sufficient).

· objects typically exchange data of size on the order of gigabytes or less (i.e., bound by memory limitations of serial machines). Consequently, the bandwidth requirements are relatively modest as compared to that of parallel applications.

Mechanisms
A design pattern that applies to a society of classes [Booch et al. 1999].

Pattern
On the surface, a pattern is just another form of documentation, which is an accepted form of capturing the knowledge of experienced developers. It is not a theoretical construct; it is a successful solution to a recurring problem. Booch [Booch et al. 1999] defines a pattern as a common solution to a common problem in a given context.

Tightly-Coupled Applications
Tightly-coupled applications have the following distinguishing characteristics:

· developed for and on a parallel programming environment (i.e., the basic model accounts for a distributed-memory architecture, typically using either message passing, shared memory model, or both).

· low latency is essential for good performance. Typically, (parallel) objects on separate processors need message-passing latencies on the order of 10 micro-seconds. Objects on the same processor should have latencies comparable to those of objects within the same address space.

· data sizes and corresponding bandwidth requirements on the order of total memory on the parallel machine (e.g., terabytes of data).

· locality of the data and objects is critical to achieving good performance (scalability).

9. References

Armstrong et al. 1999R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes, S. Parker, and B. Smolinski, Toward a Common Component Architecture for High-Performance Scientific Computing, In proceedings of Super Computing, 1999.

Szyperski 1998

 set Abernety1999 "Abernety 1999" * MERGEFORMAT Abernety 1999R. Abernety, R. Morin, and J. Chahin, COM/DCOM Unleashed, Sams Publishing, 1999.

G. Booch 1995Booch, Object Solutions, Addison-Wesley, Redwood City, CA, 1995.

Booch et al. 1999G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Addison-Wesley, Redwood City, CA, 1999.

B.J. Cox 1990aCox, There is a Silver Bullet: Reusable Components, Byte, 15, 10, (October), 209-218, 1990.

B.J. Cox 1990bCox, Planning the Software Industrial Revolution, IEEE Software, 7,6, (November), 25-33, 1990.

ECMA/NIST 1991ECMA/NIST. Reference Model for Frameworks of Software Engineering Environments. NIST Special Publication 500-201, ECMA Technical Report, ECMA TR/55, 2nd Edition, December 1991.

E. Gamma et al. 1995Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

Horstmann and Kirtland 1997M. Horstmann and M. Kirtland, DCOM Architecture, Microsoft Corporation 1997Microsoft Corporation, (available at http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomarch.htm), July, 1997.

I. Jacobson et. al 1998

 set JacobsonEtAl1998 "Jacobson et al. 1998" * MERGEFORMAT Jacobson et al. 1998Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Development Process. Addison-Wesley, Reading, Massachusetts, 1998.

Khoshafian and Buckiewicz 1995S. Khoshafian and M. Buckiewicz, Introduction to Groupware, Workflow, and Workgroup Computing, John Wiley & Sons, Inc., New York, New York, 1995.

Nierstrasz and Meijler 1995O. Nierstrasz and T.D. Meijler, Research Directions in Software Composition, ACM Computing Surveys, Vol. 27, No. 2, June 1995.

CORBA Component 1999Object Management Group, CORBA Components, OMG TC Document orbos/99-02-05, March 1999.

Szyperski 1998

 set Szyperski1998 "Szyperski 1998" * MERGEFORMAT Szyperski 1998C. Szyperski, Component Software: Beyond Object-Oriented Programming, ACM Press, New York, New York, 1998.

Sandia National Laboratories 1999Software Integration Architecture Use Case, <TBD>, 1999.

Sun Microsystems 1998Sun Microsystems, Enterprise JavaBeans Specification, Version 1.0, March 21, (available at http://www.javasoft.com/products/ejb/docs.html), 1998.

JavaBeans Specification 1997

 set JavaBeansSpec1997 "Sun Microsystems 1997" * MERGEFORMAT Sun Microsystems 1997Sun Microsystems, JavaBeans Specification, Version 1.01, July, 1997, (available at http://www.java.sun.com/beans/docs/spec.html).

Wallnau and Feiler 1991K. Wallnau and P. Feiler, Tool Integration and Environment Architectures, SEI Technical Report, SEI-91-TR-11, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA, May, 1991.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

�PAGE \# "'Page: '#'�'" ��This really is a means toward a specicfication, though I doubt if the intended audience will know the difference.

�PAGE \# "'Page: '#'�'" ��Robert, I don’t want to upset anyone and don’t understand Sandia’s politics even to know what is the correct thing to do. I’m leaving this to you.

13

[image: image7.wmf]Computer B

Computer A

Computer C

Integration

Envir Client

Legacy

Data & Syst

Integration

Envir

Component

Deployment

Envir

Component

Deployment

Envir

Legacy

Data & Syst

Computer A

Distributed Software Integration Architecture

Autonomous Software

Integration Architecture

Federated Software Integration Architecture

Legacy

Data & Syst

Integration

Envir

Integration

Envir Client

Component

Deployment

Envir

Computer A

Integration

Envir

Computer D

Integration

Envir

Computer C

Integration

Envir Client

Computer E

Integration

Envir

Computer F

Component

Deployment

Envir

Computer G

Legacy

Data & Syst

Computer H

Integration

Envir

Computer B

Integration

Envir Client

[image: image8.wmf]Application

s

Application

Servers

Data

Data

Data

Data

Servers

 Web Servers

User

Interface

Business

Logic

Adoption

Integration

Enterprise Legacy

Data, & Systems

Frameworks

I

B

M

Legacy

Systems

 Browser

Graphical User

Interface

SIA

High

Performance

Computing

Applications

_994008160.doc
[image: image1.png]Sandia
National
Laboratories

_994104272.doc

Applications

Application Servers

Data

Data

Data

Data Servers

 Web Servers

User

Interface

Business

Logic

Adoption

Integration

Enterprise Legacy

Data, & Systems

Frameworks

I

B

M

Legacy Systems

 Browser

Graphical User Interface

SIA

High Performance

Computing Applications

