Assumptions:

Way1_Solver

{

 SetM1(Operator M1);

 SetM2(Operator M2);

 SetSystemMatrix(Operator A);

 Setup;

 Solve(x, b);

}

Way2_Solver

{

 SetSystemMatrix(Operator A);

 Setup;

 Solve(x, b);

}

Way3_Solver

{

 SetM(Operator M);

 SetSystemMatrix(Operator A);

 Setup;

 Solve(x, b);

}

And the relevant proposed interfaces for ESI:

ESI_Operator

{

 Apply (in Vector b, out Vector x);

 Compose (in Operator A, out Operator thisTimesA);

 /* actually probably have ComposeLeft and ComposeRight but that doesn’t matter right here */

}

ESI_SplittableOperator

{

 Split (out Operator L, out Operator R);

 ComposeSplit (in Operator A, out Operator LAR);

ESI_PreconditionedSolver

{

 SetPreconditioner(in Operator pc);

 SetPreconditioningSide(in ESI_Side side);

 SetSystemMatrix(in Operator A);

 Setup;

 Apply(in ESI_Vector b, out ESI_Vector x);

}

I’m not an expert on Eisenstat SSOR, but my assumption will be that what this is mathematically is LAR = a front sweep of SOR, A, and a back sweep of SOR. If this isn’t right, hopefully I can modify this to represent the correct thing.

The concrete class SSOR preconditioner is:

Class SSOR_pc implements SplittableOperator {

Private: ESI_Operator A;

ESI_operator priv_L, priv_R;

Constructor takes only A

ConstructorCode: {

priv_L = SOR (A, forward);

priv_R = SOR (A, backward);

} /* end “constructor” */

/* Since SSOR_pc is an Operator, it has to have an apply function. This is implemented by chaining the two SOR sweeps */

SSOR_pc::Apply(ESI_vector b, ESI_vector x);

{ temp = priv_R.Apply(x);

 b = priv_L.Apply(temp);

}

/* Splitting is trivial since it is already split internally */

SSOR_pc::Split(ESI_Operator L, ESI_Operator R)

{ L = priv_L;

 R = priv_R;

}

/* For compose split, if the input Operator is the same one that was used to build the SOR sweeps, we can jump into our specialized code that makes a super efficient LAR. Otherwise we return an operator that is just all three operators chained. */

SSOR_pc::ComposeSplit(ESI_Operator in, ESI_Operator LAR)

{ if same(in, A) /* a function like this is in ESI_Object */

 LAR = Eisenstat_trick (A);

 Else /* not really important for these purposes but it’s easy */

 in.compose (priv_R, temp);

 priv_L.compose (temp, LAR);

}

SOR is just a class that takes a matrix and a parameter of front or back and returns an Operator that represents the appropriate SOR sweep. Ultimately this would be a “builder” class but it is sufficient for now to just think of it as an Operator class. Looks like Eisenstat below.

Eisenstat_trick is likewise an Operator builder that takes a matrix and returns an Operator that represents LAR for Eisenstat’s trick in a compact way. Again, it is sufficient for now to have it be an Operator.

Class Eisenstat_trick implements ESI_Operator{

Constructor: takes ESI_Operator A;

Eisenstat_trick.Setup::

{/* whatever calculations are necessary to be ready to apply LAR */}

Eisenstat_trick.Apply::

{/* whatever calculations are necessary to apply LAR */}

Implementation of wrappers around the given Krylov solvers that allow all of the Krylov solvers to take a preconditioner through the proposed interface, use any of left, right, and split preconditioning, and do it all without the user knowing which “way solver” is underneath:

/* Way 1 is the easiest, because it’s interface allows us to input M1 and M2 as separate entities, and so we don’t have to do any transformation of the system before calling way1. This assumes that the way1 solver knows how to get Eisenstat’s trick when it is appropriate. If this is not the case, then we can just ignore M1, M2, and M (set them to identities) and use the code from the Way 2 solver. */

Way1Wrapper

{

 Private:

 Way1_Solver way1_solver;

 Operator A;

 Operator pc;

 Operator M1;

 Operator M2;

}

Way1Wrapper:Setup

{

 way1_solver.SetSystemMatrix(A);

 if (side == left)

 {

 way1_solver.SetM1(pc);

 way1_solver.SetM2(ESI_Identity);

 }

 if (side == right)

 {

 way1_solver.SetM1(ESI_Identity);

 way1_solver.SetM2(pc);

 }

 if (side == split)

 {

 if (pc is an OperatorSplittable)

 {

 pc.Split(M1, M2);

 way1_solver.SetM1(M1);

 way1_solver.SetM2(M2);

 } else ThrowException;

 }

 way1_solver.Setup;

}

Way1Wrapper:Apply(x, b);

{

 way1_solver.solve(x, b);

}

Way2 is the least common denominator, since anything we can do with one of these we can also do with the others just by ignoring their extra functions M, M1, and M2. We have to transform the system to get this to work, though. We transform it twice: first to the residual form to avoid having to convert the initial guess, and secondly we change the system matrix to be the preconditioned matrix. */

Way2Wrapper

{

 Private:

 Way2_Solver way2_solver;

 ESI_Operator A;

 ESI_Operator pc;

 ESI_Operator way2_A;

 ESI_Operator L, R, LA;

 ESI_Vector way2_x, way2_b, temp1, residual_x, residual_b;

 ESI_PreconditionedSolver pc_solver;

}

Way2Wrapper:Setup

{

 if (side == left)

 {

 A.ComposeLeft(pc, way2_A);

 }

 if (side == right)

 {

 A.ComposeRight(pc, way2_A);

 }

 if (side == split)

 {

 if (pc is an OperatorSplittable)

 {

 pc.ComposeSplit(A, way2_A);

 /* Returns efficient M1 A M2 if available */

 } else ThrowException;

 }

 way2_solver.SetSystemMatrix(way2_A);

 way2_solver.Setup;

}

Way2Wrapper:Apply(x, b);

{

 if (side == left)

 {

 /* want way2_solver to solve (pc A) x = (pc b) */

 pc.Apply(b, way2_b);

 way2_solver.solve(way2_b, x);

 }

 if (side == right)

 {

 /* Solve the residual form of the equation */

 temp1 = A.Apply (x);

 residual_b = b – temp1; /* really done through the vector saxpy */

 way2_x = 0; /* I think this is vector.putc */

 /* want way2_solver to solve (A R)(R^(-1) x) = (b) */

 way2_b = residual_b; /* vector copy */

 way2_solver.solve(way2_b, way2_x);

 /* transform answer back */

 R.Apply(way2_x, residual_x);

 /* update initial guess with answer to residual system */

 x = x + residual_x;

 }

 if (side == split)

 {

 /* need to split the operator to transform vectors */

 if (pc is an OperatorSplittable)

 {

 pc.Split(L, R);

 } else ThrowException

 /* Solve the residual form of the equation */

 temp1 = A.Apply (x);

 residual_b = b – temp1; /* really done through the vector saxpy */

 way2_x = 0; /* I think this is vector.putc */

 /* want way2_solver to solve (L A R)(R^(-1) x) = (L b) */

 L.Apply(residual_b, way2_b); /* transform rhs */

 way2_solver.solve(way2_b, way2_x);

 /* transform answer back */

 R.Apply(way2_x, residual_x);

 /* update initial guess with answer to residual system */

 x = x + residual_x;

 }

}

I won’t list way 3 here, since it can be done exactly the same as way 2 by setting M = I.

