A Call for Discussion Among DOE Labs Concerning 

Interfaces to Linear Solver Libraries

One comment we hear repeatedly on the issue of integrating new linear 

solver technology into DOE and ASCI application codes is that the 

applications people are often put off by the considerable overhead 

required when switching between linear solver packages. Each package 

has its own needs in terms of interfaces, and modifying an application 

to match a new solver may take weeks or even months of work. The situation 

for distributed memory parallel computers is even worse. This discourages 

them from experimenting with new solvers, presenting a serious obstacle to 

those of us in the business of developing new and better solvers and getting 

them into applications.

It would seem that the time is right to start a dialogue on this 

issue. This issue is a problem across the DOE and ASCI labs and some 

sort of solution is something from which we can all benefit. Therefore, 

our bent at LLNL is completely aimed at finding a practical solution. 

We stress that we are neither presenting ourselves as experts in this 

area, nor do we have a vested interest in promoting some particular 

agenda that happens to match some product we currently produce. 

To help get the discussion started, we want to submit the following 

viewpoints, many of which are culled from other sources:

1) We feel that the most important level to be concerned with at this 

point is the interface between an application program and the linear 

algebra services that it requires. It is this level which affects 

whether or not an application team will try a new linear solver.

2) There seem to be two separate but related interfaces that are 

important: an interface to the linear system (i.e., matrices and vectors), 

and an interface to the linear solvers.

3) As many have pointed out, each application has its own natural way 

of looking at a "matrix" (or vector). Unfortunately, the application 

viewpoint is seldom the traditional linear algebraic viewpoint that 

linear solvers naturally employ. Thus, perhaps the most important aspect 

of an interface standard is to provide a flexible mechanism for 

allowing applications to describe and build matrices in terms that 

are natural for the application while storing the matrix in the format 

expected by the solvers.

4) Object-based methodologies are being seen more and more in existing 

packages (by object-based we mean object-oriented in concept but not 

necessarily in language, i.e. not necessarily C++). These seem to 

provide an excellent way to allow the details of the storage of a 

matrix to be known to an application at the level that the application 

desires. In particular, they allow an application to ignore details 

of underlying storage. Also, object-based code can be fairly language 

independent, an important consideration since there are several 

languages in use throughout the community.

5) We argue that, at this point, the goal for interfaces should be a 

standard *style* rather than a strict specification of calling sequences, 

semantics, etc. This is to avoid long-drawn bickering over minor details. 

And, by specifying only a style, we can achieve the goal of providing 

interfaces that are easy for applications people *without* imposing 

restrictions on groups developing linear solver libraries.

We pulled together ideas from various packages to produce a layman's 

version of a proposal for an object-based style for interfaces that has 

the following characteristics:

- The linear system components and the linear solver data are 

objects that have meaning to the user only through the 

package-provided interface routines (e.g., they might be 

pointers to void). All details of these objects are managed by 

the package.

- A package provides one or more "conceptual interfaces" for 

building linear systems. The conceptual interface provides a 

series of routines for describing and building matrices and 

vectors in a way that is natural to the application. The 

conceptual interface is divorced from the underlying storage and 

distribution scheme. The storage scheme always has a default; 

any user-settable options are determined by the package, and are 

always set by *optional* routines.

- Calling sequences for all routines should always be a short as 

possible and include *only* those parameters that are 

required. All other parameters should have defaults and should 

be set only with optional routines.

- Note that there are a small set of commonly used conceptual 

interfaces, such as structured grid with regular stencil, 

finite elements, and the traditional linear algebraic. 

Some of you may already be involved with efforts to standardize 

particular conceptual interfaces (for example, the ISIS++ developers 

at Sandia Livermore have been working closely with the ALE3D ASCI 

Applications code group here at LLNL in an effort to standardize 

finite element interfaces). Our initial proposal does not address 

standardization of these interfaces, as we want to concentrate on 

the separation of the conceptual interfaces from the storage. 

However, any effort should take into account the requirements of 

various conceptual interfaces to ensure that the interface style 

is sufficient for the needs of specific instantiations.

We have a slightly longer and more detailed version of our working proposal 

that we can distribute if that would be of help in stimulating this discussion.

Again, we want this to be a discussion, not a forum for promoting our 

own proposal. We encourage everyone involved to voice their opinions 

concerning this issue, and to do so soon so that some sort of usable 

standard can be in place in a timely manner.


